711 resultados para prerequisite
Resumo:
Alzheimer’s disease is characterized by two types of fibrous aggregates in the affected brains, the amyloid fibers (consisting of the Aβ-peptide, generating the amyloid plaques), and paired helical filaments (PHFs; made up of tau protein, forming the neurofibrillary tangles). Hence, tau protein, a highly soluble protein that normally stabilizes microtubules, becomes aggregated into insoluble fibers that obstruct the cytoplasm of neurons and cause a loss of microtubule stability. We have developed recently a rapid assay for monitoring PHF assembly and show here that PHFs arise from a nucleated assembly mechanism. The PHF nucleus comprises about 8–14 tau monomers. A prerequisite for nucleation is the dimerization of tau because tau dimers act as effective building blocks. PHF assembly can be seeded by preformed filaments (made either in vitro or isolated from Alzheimer brain tissue). These results suggest that dimerization and nucleation are the rate-limiting steps for PHF formation in vivo.
Resumo:
The transformation-associated recombination (TAR) cloning technique allows selective and accurate isolation of chromosomal regions and genes from complex genomes. The technique is based on in vivo recombination between genomic DNA and a linearized vector containing homologous sequences, or hooks, to the gene of interest. The recombination occurs during transformation of yeast spheroplasts that results in the generation of a yeast artificial chromosome (YAC) containing the gene of interest. To further enhance and refine the TAR cloning technology, we determined the minimal size of a specific hook required for gene isolation utilizing the Tg.AC mouse transgene as a targeted region. For this purpose a set of vectors containing a B1 repeat hook and a Tg.AC-specific hook of variable sizes (from 20 to 800 bp) was constructed and checked for efficiency of transgene isolation by a radial TAR cloning. When vectors with a specific hook that was ≥60 bp were utilized, ∼2% of transformants contained circular YACs with the Tg.AC transgene sequences. Efficiency of cloning dramatically decreased when the TAR vector contained a hook of 40 bp or less. Thus, the minimal length of a unique sequence required for gene isolation by TAR is ∼60 bp. No transgene-positive YAC clones were detected when an ARS element was incorporated into a vector, demonstrating that the absence of a yeast origin of replication in a vector is a prerequisite for efficient gene isolation by TAR cloning.
Resumo:
GOBASE (http://megasun.bch.umontreal.ca/gobase/) is a network-accessible biological database, which is unique in bringing together diverse biological data on organelles with taxonomically broad coverage, and in furnishing data that have been exhaustively verified and completed by experts. So far, we have focused on mitochondrial data: GOBASE contains all published nucleotide and protein sequences encoded by mitochondrial genomes, selected RNA secondary structures of mitochondria-encoded molecules, genetic maps of completely sequenced genomes, taxonomic information for all species whose sequences are present in the database and organismal descriptions of key protistan eukaryotes. All of these data have been integrated and organized in a formal database structure to allow sophisticated biological queries using terms that are inherent in biological concepts. Most importantly, data have been validated, completed, corrected and standardized, a prerequisite of meaningful analysis. In addition, where critical data are lacking, such as genetic maps and RNA secondary structures, they are generated by the GOBASE team and collaborators, and added to the database. The database is implemented in a relational database management system, but features an object-oriented view of the biological data through a Web/Genera-generated World Wide Web interface. Finally, we have developed software for database curation (i.e. data updates, validation and correction), which will be described in some detail in this paper.
Resumo:
An emerging theme in transforming growth factor-β (TGF-β) signalling is the association of the Smad proteins with diverse groups of transcriptional regulatory proteins. Several Smad cofactors have been identified to date but the diversity of TGF-β effects on gene transcription suggests that interactions with other co-regulators must occur. In these studies we addressed the possible interaction of Smad proteins with the myocyte enhancer-binding factor 2 (MEF2) transcriptional regulators. Our studies indicate that Smad2 and 4 (Smad2/4) complexes cooperate with MEF2 regulatory proteins in a GAL4-based one-hybrid reporter gene assay. We have also observed in vivo interactions between Smad2 and MEF2A using co-immunoprecipitation assays. This interaction is confirmed by glutathione S-transferase pull-down analysis. Immunofluorescence studies in C2C12 myotubes show that Smad2 and MEF2A co-localise in the nucleus of multinuclear myotubes during differentiation. Interestingly, phospho-acceptor site mutations of MEF2 that render it unresponsive to p38 MAP kinase signalling abrogate the cooperativity with the Smads suggesting that p38 MAP Kinase-catalysed phosphorylation of MEF2 is a prerequisite for the Smad–MEF2 interaction. Thus, the association between Smad2 and MEF2A may subserve a physical link between TGF-β signalling and a diverse array of genes controlled by the MEF2 cis element.
Resumo:
Tracheary element differentiation requires strict coordination of secondary cell wall synthesis and programmed cell death (PCD) to produce a functional cell corpse. The execution of cell death involves an influx of Ca2+ into the cell and is manifested by rapid collapse of the large hydrolytic vacuole and cessation of cytoplasmic streaming. This precise means of effecting cell death is a prerequisite for postmortem developmental events, including autolysis and chromatin degradation. A 40-kD serine protease is secreted during secondary cell wall synthesis, which may be the coordinating factor between secondary cell wall synthesis and PCD. Specific proteolysis of the extracellular matrix is necessary and sufficient to trigger Ca2+ influx, vacuole collapse, cell death, and chromatin degradation, suggesting that extracellular proteolysis plays a key regulatory role during PCD. We propose a model in which secondary cell wall synthesis and cell death are coordinated by the concomitant secretion of the 40-kD protease and secondary cell wall precursors. Subsequent cell death is triggered by a critical activity of protease or the arrival of substrate signal precursor corresponding with the completion of a functional secondary cell wall.
Resumo:
Multiphoton ionization of thymine and uracil clusters generated by a supersonic molecular beam gave rise to a remarkable alternation of mass spectral intensities between even- and odd-numbered clusters. Such alternation was observed in clusters of up to 30 molecules. Excitation to the two lowest electronically excited states seemed to be a strong prerequisite. In view of the well known photodimerization reaction of thymine and uracil in the bulk phase, it is proposed that such alternation in the mass spectral intensity resulted from formation of photodimer units within the cluster on intense UV irradiation. Several analogues of thymine with no known propensity for photodimerization in the bulk phase did not exhibit any sign of such alternation in the cluster mass spectrum. The intrinsic UV window for photodimerization, and hence photoinduced mammalian mutagenesis, was estimated to be approximately 210–280 nm, significantly narrower than the previously reported bulk values of 150–300 nm.
Resumo:
Understanding the factors responsible for variations in mutation patterns and selection efficacy along chromosomes is a prerequisite for deciphering genome sequences. Population genetics models predict a positive correlation between the efficacy of selection at a given locus and the local rate of recombination because of Hill–Robertson effects. Codon usage is considered one of the most striking examples that support this prediction at the molecular level. In a wide range of species including Caenorhabditis elegans and Drosophila melanogaster, codon usage is essentially shaped by selection acting for translational efficiency. Codon usage bias correlates positively with recombination rate in Drosophila, apparently supporting the hypothesis that selection on codon usage is improved by recombination. Here we present an exhaustive analysis of codon usage in C. elegans and D. melanogaster complete genomes. We show that in both genomes there is a positive correlation between recombination rate and the frequency of optimal codons. However, we demonstrate that in both species, this effect is due to a mutational bias toward G and C bases in regions of high recombination rate, possibly as a direct consequence of the recombination process. The correlation between codon usage bias and recombination rate in these species appears to be essentially determined by recombination-dependent mutational patterns, rather than selective effects. This result highlights that it is necessary to take into account the mutagenic effect of recombination to understand the evolutionary role and impact of recombination.
Resumo:
The Escherichia coli biotin repressor binds to the biotin operator to repress transcription of the biotin biosynthetic operon. In this work, a structure determined by x-ray crystallography of a complex of the repressor bound to biotin, which also functions as an activator of DNA binding by the biotin repressor (BirA), is described. In contrast to the monomeric aporepressor, the complex is dimeric with an interface composed in part of an extended β-sheet. Model building, coupled with biochemical data, suggests that this is the dimeric form of BirA that binds DNA. Segments of three surface loops that are disordered in the aporepressor structure are located in the interface region of the dimer and exhibit greater order than was observed in the aporepressor structure. The results suggest that the corepressor of BirA causes a disorder-to-order transition that is a prerequisite to repressor dimerization and DNA binding.
Resumo:
Surface reactive phases of soils and aquifers, comprised of phyllosilicate and metal oxohydroxide minerals along with humic substances, play a critical role in the regulation of contaminant fate and transport. Much of our knowledge concerning contaminant-mineral interactions at the molecular level, however, is derived from extensive experimentation on model mineral systems. Although these investigations have provided a foundation for understanding reactive surface functional groups on individual mineral phases, the information cannot be readily extrapolated to complex mineral assemblages in natural systems. Recent studies have elucidated the role of less abundant mineral and organic substrates as important surface chemical modifiers and have demonstrated complex coupling of reactivity between permanent-charge phyllosilicates and variable-charge Fe-oxohydroxide phases. Surface chemical modifiers were observed to control colloid generation and transport processes in surface and subsurface environments as well as the transport of solutes and ionic tracers. The surface charging mechanisms operative in the complex mineral assemblages cannot be predicted based on bulk mineralogy or by considering surface reactivity of less abundant mineral phases based on results from model systems. The fragile nature of mineral assemblages isolated from natural systems requires novel techniques and experimental approaches for investigating their surface chemistry and reactivity free of artifacts. A complete understanding of the surface chemistry of complex mineral assemblages is prerequisite to accurately assessing environmental and human health risks of contaminants or in designing environmentally sound, cost-effective chemical and biological remediation strategies.
Resumo:
Understanding how the brain processes vocal communication sounds is one of the most challenging problems in neuroscience. Our understanding of how the cortex accomplishes this unique task should greatly facilitate our understanding of cortical mechanisms in general. Perception of species-specific communication sounds is an important aspect of the auditory behavior of many animal species and is crucial for their social interactions, reproductive success, and survival. The principles of neural representations of these behaviorally important sounds in the cerebral cortex have direct implications for the neural mechanisms underlying human speech perception. Our progress in this area has been relatively slow, compared with our understanding of other auditory functions such as echolocation and sound localization. This article discusses previous and current studies in this field, with emphasis on nonhuman primates, and proposes a conceptual platform to further our exploration of this frontier. It is argued that the prerequisite condition for understanding cortical mechanisms underlying communication sound perception and production is an appropriate animal model. Three issues are central to this work: (i) neural encoding of statistical structure of communication sounds, (ii) the role of behavioral relevance in shaping cortical representations, and (iii) sensory–motor interactions between vocal production and perception systems.
Resumo:
Invasive species are of great interest to evolutionary biologists and ecologists because they represent historical examples of dramatic evolutionary and ecological change. Likewise, they are increasingly important economically and environmentally as pests. Obtaining generalizations about the tiny fraction of immigrant taxa that become successful invaders has been frustrated by two enigmatic phenomena. Many of those species that become successful only do so (i) after an unusually long lag time after initial arrival, and/or (ii) after multiple introductions. We propose an evolutionary mechanism that may account for these observations. Hybridization between species or between disparate source populations may serve as a stimulus for the evolution of invasiveness. We present and review a remarkable number of cases in which hybridization preceded the emergence of successful invasive populations. Progeny with a history of hybridization may enjoy one or more potential genetic benefits relative to their progenitors. The observed lag times and multiple introductions that seem a prerequisite for certain species to evolve invasiveness may be a correlate of the time necessary for previously isolated populations to come into contact and for hybridization to occur. Our examples demonstrate that invasiveness can evolve. Our model does not represent the only evolutionary pathway to invasiveness, but is clearly an underappreciated mechanism worthy of more consideration in explaining the evolution of invasiveness in plants.
Resumo:
mRNA localization is a complex pathway. Besides mRNA sorting per se, this process includes aspects of regulated translation. It requires protein factors that interact with defined sequences (or sequence motifs) of the transcript, and the protein/RNA complexes are finally guided along the cytoskeleton to their ultimate destinations. The mRNA encoding the vasopressin (VP) precursor protein is localized to the nerve cell processes in vivo and in primary cultured nerve cells. Sorting of VP transcripts to dendrites is mediated by the last 395 nucleotides of the mRNA, the dendritic localizer sequence, and it depends on intact microtubules. In vitro interaction studies with cytosolic extracts demonstrated specific binding of a protein, enriched in nerve cell tissues, to the radiolabeled dendritic localizer sequence probe. Biochemical purification revealed that this protein is the multifunctional poly(A)-binding protein (PABP). It is well known for its ability to bind with high affinity to poly(A) tails of mRNAs, prerequisite for mRNA stabilization and stimulation of translational initiation, respectively. With lower affinities, PABP can also associate with non-poly(A) sequences. The physiological consequences of these PABP/RNA interactions are far from clear but may include functions such as translational silencing. Presumably, the translational state of mRNAs subject to dendritic sorting is influenced by external stimuli. PABP thus could be a component required to regulate local synthesis of the VP precursor and possibly of other proteins.
Resumo:
For a better understanding of Al inhibition of root elongation, knowledge of the morphological and functional organization of the root apex is a prerequisite. We developed a polyvinyl chloride-block technique to supply Al (90 μm monomeric Al) in a medium containing agarose to individual 1-mm root zones of intact seedlings of maize (Zea mays L. cv Lixis). Root elongation was measured during a period of 5 h. After Al treatment, callose (5 h) and Al (1 h) contents of individual 1-mm apical root segments were determined. For comparison, callose and Al levels were also measured in root segments after uniform Al supply in agarose blocks to the 10-mm root apex. Only applying Al to the three apical 1-mm root zones inhibited root elongation after 1 h. The order of sensitivity was 1 to 2 > 0 to 1 > 2 to 3 mm. In the 1- to 2-mm root zone high levels of Al-induced callose formation and accumulation of Al was found, independently of whether Al was applied to individual apical root zones or uniformly to the whole-root apex. We conclude from these results that the distal part of the transition zone of the root apex, where the cells are undergoing a preparatory phase for rapid elongation (F. Baluška, D. Volkmann, P.W. Barlow [1996] Plant Physiol 112: 3–4), is the primary target of Al in this Al-sensitive maize cultivar.
Resumo:
Hypoxia-inducible factor, a heterodimeric transcription complex, regulates cellular and systemic responses to low oxygen levels (hypoxia) during normal mammalian development or tumor progression. Here, we present evidence that a similar complex mediates response to hypoxia in Caenorhabditis elegans. This complex consists of HIF-1 and AHA-1, which are encoded by C. elegans homologs of the hypoxia-inducible factor (HIF) α and β subunits, respectively. hif-1 mutants exhibit no severe defects under standard laboratory conditions, but they are unable to adapt to hypoxia. Although wild-type animals can survive and reproduce in 1% oxygen, the majority of hif-1-defective animals die in these conditions. We show that the expression of an HIF-1:green fluorescent protein fusion protein is induced by hypoxia and is subsequently reduced upon reoxygenation. Both hif-1 and aha-1 are expressed in most cell types, and the gene products can be coimmunoprecipitated. We conclude that the mechanisms of hypoxia signaling are likely conserved among metazoans. Additionally, we find that nuclear localization of AHA-1 is disrupted in an hif-1 mutant. This finding suggests that heterodimerization may be a prerequisite for efficient nuclear translocation of AHA-1.
Resumo:
Accurately identifying accessible sites in RNA is a critical prerequisite for optimising the cleavage efficiency of hammerhead ribozymes and other small nucleozymes. Here we describe a simple RNase H-based procedure to rapidly identify hammerhead ribozyme-accessible sites in gene length RNAs. Twelve semi-randomised RNA–DNA–RNA chimeric oligonucleotide probes, known as ‘gapmers’, were used to direct RNase H cleavage of transcripts with the specificity expected for hammerhead ribozymes, i.e. after NUH sites (where H is A, C or U). Cleavage sites were identified simply by the mobility of RNase H cleavage products relative to RNA markers in denaturing polyacrylamide gels. Sites were identified in transcripts encoding human interleukin-2 and platelet-derived growth factor. Thirteen minimised hammerhead ribozymes, miniribozymes (Mrz), were synthesised and in vitro cleavage efficiency (37°C, pH 7.6 and 1 mM MgCl2) at each site was analysed. Of the 13 Mrz, five were highly effective, demonstrating good initial rate constants and extents of cleavage. The speed and accuracy of this method commends its use in screening for hammerhead-accessible sites.