892 resultados para power in the bucket
Resumo:
Transition waves and interactions between two kinds of instability-vortex shedding and transition wave in the near wake of a circular cylinder in the Reynolds number range 3 000-10 000 are studied by a domain decomposition hybrid numerical method. Based on high resolution power spectral analyses for velocity new results on the Reynolds-number dependence of the transition wave frequency, i.e. f(t)/f(s) similar to Re-0.87 are obtained. The new predictions are in good agreement with the experimental results of Wei and Smith but different from Braza's prediction and some early experimental results f(t)/f(s) similar to Re-0.5 given by Bloor et nl. The multi-interactions between two kinds of vortex are clearly visualized numerically. The strong nonlinear interactions between the two independent frequencies (f(t), f(s)) leading to spectra broadening to form the coupling mf(s) +/- nf(t) are predicted and analyzed numerically, and the characteristics of the transition are described. Longitudinal variations of the transition wave and its coupling are reported. Detailed mechanism of the flow transition in the near wake before occurrence of the three-dimensional evolution is provided.
Resumo:
Describes a series of experiments in the Joint European Torus (JET), culminating in the first tokamak discharges in deuterium-tritium fuelled mixture. The experiments were undertaken within limits imposed by restrictions on vessel activation and tritium usage. The objectives were: (i) to produce more than one megawatt of fusion power in a controlled way; (ii) to validate transport codes and provide a basis for accurately predicting the performance of deuterium-tritium plasmas from measurements made in deuterium plasmas; (iii) to determine tritium retention in the torus systems and to establish the effectiveness of discharge cleaning techniques for tritium removal; (iv) to demonstrate the technology related to tritium usage; and (v) to establish safe procedures for handling tritium in compliance with the regulatory requirements. A single-null X-point magnetic configuration, diverted onto the upper carbon target, with reversed toroidal magnetic field was chosen. Deuterium plasmas were heated by high power, long duration deuterium neutral beams from fourteen sources and fuelled also by up to two neutral beam sources injecting tritium. The results from three of these high performance hot ion H-mode discharges are described: a high performance pure deuterium discharge; a deuterium-tritium discharge with a 1% mixture of tritium fed to one neutral beam source; and a deuterium-tritium discharge with 100% tritium fed to two neutral beam sources. The TRANSP code was used to check the internal consistency of the measured data and to determine the origin of the measured neutron fluxes. In the best deuterium-tritium discharge, the tritium concentration was about 11% at the time of peak performance, when the total neutron emission rate was 6.0 × 1017 neutrons/s. The integrated total neutron yield over the high power phase, which lasted about 2 s, was 7.2 × 1017 neutrons, with an accuracy of ±7%. The actual fusion amplification factor, QDT was about 0.15
Resumo:
Crack growth due to cavity growth and coalescence along grain boundaries is analyzed under transient and extensive creep conditions in a compact tension specimen. Account is taken of the finite geometry changes accompanying crack tip blunting. The material is characterized as an elastic-power law creeping solid with an additional contribution to the creep rate arising from a given density of cavitating grain boundary facets. All voids are assumed present from the outset and distributed on a given density of cavitating grain boundary facets. The evolution of the stress fields with crack growth under three load histories is described in some detail for a relatively ductile material. The full-field plane strain finite element calculations show the competing effects of stress relaxation due to constrained creep, diffusion and crack tip blunting. and of stress increase due to the instantaneous elastic response to crack growth. At very high crack growth rates the Hui-Riedel fields dominate the crack tip region. However. the high growth rates are not sustained for any length of time in the compact tension geometry analyzed. The region of dominance of the Hui-Riedel field shrinks rapidly so that the near-tip fields are controlled by the HRR-type field shortly after the onset of crack growth. Crack growth rates under various conditions of loading and spanning the range of times from small scale creep to extensive creep are obtained. We show that there is a strong similarity between crack growth history and the behaviour of the C(t) and C(t) parameters. so that crack growth rates correlate rather well with C(t) and C(t). A relatively brittle material is also considered that has a very different near-tip stress field and crack growth history.
Resumo:
Revised: 2006-06
Resumo:
This paper analyzes union formation in a model of bargaining between a firm and several unions. We address two questions: first, the optimal configuration of unions (their number and size) and, second, the impact of the bargaining pattern (simultaneous or sequential). For workers, grouping into several unions works as a price discrimination device which, at the same time, decreases their market power. The analysis shows that optimal union configuration depends on the rules that regulate the bargaining process (monopoly union, Nash bargaining or right to manage).
Resumo:
ABSTRACT: The Potomac River Fisheries Program is concerned with the longterm effects of power plant ichthyoplankton entrainment on striped bass(hforone smatilis) recruitment. Since striped bass population fluctuations are determined strongly by environmental conditions during spawning and early development, assessment of power plant-induced ichthyoplankton mortalities must consider the mechanisms controlling spawning success. Ichthyoplankton distributions for 1974, spawning population abundance and fecundity, and environmental conditions were considered for analysis. Loss of the early part of the spawn (including the peak) accounted for the highest mortalities among ichthyoplankton. This was due to the proximity of these distributions to the salt wedge where transport into regions un!ivorable to survival seems to have occurred. The later, successful portion of the spawn occurred further upstream, in fresh tidal portions of the river. The sequence of events Ieading to an assessment of factors affecting ichthyoplankton surnnl are evaluated. Due to high early mortalities in ichthyoplankton, 1974 spawning success was low, and a poor yearclass is projected.
Resumo:
Previous simulations of potential ichthyoplankton entrainment by power generating stations on the Potomac estuary have not included the influence of lateral transport in distributing eggs and larvae over the nursery area. Therefore, two-dimensional, vertically-averaged hydrodynamic and kinematic models of passive organism transport were developed to represent advective and dispersive processes near the proposed Douglas Point Nuclear Generating Station. Although the more refined model did not substantially alter the estimate of ichthyoplankton entrainment, it did reveal that lateral inhomogeneities in hydrodynamics could engender several fold differences in entrainment probabilities on opposite sides of the estuary. Models of higher resolution and greater biological detail did not project greater total entrainment by the Douglas Point plant, because the volume of nontidal flow past the site was large in comparison to the proposed rate of cooling water withdrawal.
Resumo:
This paper deals with the relation between trawling gear and towing power of the Nigerian inshore fishing trawlers. Information on the size as well as weight variations of the existing otter boards as they relate to the horse power of the engine and length of warps in relation to fishing depth are given
Resumo:
Density functional theory/molecular dynamics simulations were employed to give insights into the mechanism of voltage generation based on a water-filled single-walled boron-nitrogen nanotube (SWBNNT). Our calculations showed that (1) the transport properties of confined water in a SWBNNT are different from those of bulk water in view of configuration, the diffusion coefficient, the dipole orientation, and the density distribution, and (2) a voltage difference of several millivolts would generate between the two ends of a SWBNNT due to interactions between the water dipole chains and charge carriers in the tube. Therefore, this structure of a water-filled SWBNNT can be a promising candidate for a synthetic nanoscale power cell as well as a practical nanopower harvesting device.