981 resultados para polarization properties


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Water removal during drying depends on the pathway of water migration from food materials. Moreover, the water removal rate also depends on the characteristics of the cell wall of plant tissue. In this study, the influence of cell wall properties (such as moisture distribution, stiffness, thickness and cell dimension) on porosity and shrinkage of dried product was investigated. Cell wall stiffness depends on a complex combination of plant cell microstructure, composition of food materials and the water-holding capacity of the cell. In this work, a preliminary investigation of the cell wall properties of apple was conducted in order to predict changes of porosity and shrinkage during drying. Cell wall characteristics of two types of apple (Granny Smith and Red Delicious) were investigated under convective drying to correlate with porosity and shrinkage. A scanning electron microscope (SEM), 2kN Intron, pycnometer and ImageJ software were used in order to measure and analyse cell characteristics, water holding capacity of cell walls, porosity and shrinkage. The cell firmness of the Red Delicious apple was found to be higher than for Granny Smith apples. A remarkable relationship was observed between cell wall characteristics when compare with heat and mass transfer characteristics. It was also found that the evolution of porosity and shrinkage are noticeably influenced by the nature of the cell wall during convective drying. This study has revealed a better understanding of porosity and the shrinkage of dried food at microscopy (cell) level, and will provide better insights to attain energy-effective drying processes and improved quality of dried foods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aimed to provide a detailed evaluation and comparison of a range of modulated beam evaluation metrics, in terms of their correlation with QA testing results and their variation between treatment sites, for a large number of treatments. Ten metrics including the modulation index (MI), fluence map complexity (FMC), modulation complexity score (MCS), mean aperture displacement (MAD) and small aperture score (SAS) were evaluated for 546 beams from 122 IMRT and VMAT treatment plans targeting the anus, rectum, endometrium, brain, head and neck and prostate. The calculated sets of metrics were evaluated in terms of their relationships to each other and their correlation with the results of electronic portal imaging based quality assurance (QA) evaluations of the treatment beams. Evaluation of the MI, MAD and SAS suggested that beams used in treatments of the anus, rectum, head and neck were more complex than the prostate and brain treatment beams. Seven of the ten beam complexity metrics were found to be strongly correlated with the results from QA testing of the IMRT beams (p < 0.00008). For example, Values of SAS (with MLC apertures narrower than 10 mm defined as “small”) less than 0.2 also identified QA passing IMRT beams with 100% specificity. However, few of the metrics are correlated with the results from QA testing of the VMAT beams, whether they were evaluated as whole 360◦ arcs or as 60◦ sub-arcs. Select evaluation of beam complexity metrics (at least MI, MCS and SAS) is therefore recommended, as an intermediate step in the IMRT QA chain. Such evaluation may also be useful as a means of periodically reviewing VMAT planning or optimiser performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigated the influence of nano-silica (NS) on the mechanical and transport properties of lightweight concrete (LWC). The resistance of LWC to water and chloride ions penetration was enhanced despite strength marginally increased. Water penetration depth, moisture sorptivity, chloride migration and diffusion coefficient was reduced by 23% and 49%, 23% and 10%, 5% and 0%, 22% and 12% compared to the two reference LWC mixes (pure cement and 60% slag blended cement), respectively with 1% NS. Such improvements were attributed to more compact microstructures because the micropore system was refined and the interface between aggregates and paste was enhanced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoporous Nb2O5 has been previously demonstrated to be a viable electrochromic material with strong intercalation characteristics. Despite showing such promising properties, its potential for optical gas sensing applications, which involves the production of ionic species such as H+, has yet to be explored. Nanoporous Nb2O5 can accommodate a large amount of H+ ions in a process that results in an energy bandgap change of the material, which induces an optical response. Here, we demonstrate the optical hydrogen gas (H¬2) sensing capability of nanoporous anodic Nb2O5 with a large surface-to-volume ratio prepared via a high temperature anodization method. The large active surface area of the film provides enhanced pathways for efficient hydrogen adsorption and dissociation, which are facilitated by a thin layer of Pt catalyst. We show that the process of H2 sensing causes optical modulations that are investigated in terms of response magnitudes and dynamics. The optical modulations induced by the intercalation process and sensing properties of nanoporous anodic Nb2O5 shown in this work can potentially be used for future optical gas sensing systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents a comprehensive study on the influences of biodiesel chemical composition and physical properties on diesel engine exhaust particle emissions. It examines biodiesels from several feedstocks having wide variations in their chemical composition (carbon chain length, unsaturation and oxygen content) and physical properties (density, viscosity, surface tension, boiling point etc.), and evaluates their influence on exhaust particle emissions. The outcome of this thesis is significant since it reveals the importance of regulating biodiesels chemical composition in order to ensure lowest possible emissions with better overall performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this project is to investigate the strain-rate dependent mechanical behaviour of single living cells using both experimental and numerical techniques. The results revealed that living cells behave as porohyperlastic materials and that both solid and fluid phases within the cells play important roles in their mechanical responses. The research reported in this thesis provides a better understanding of the mechanisms underlying the cellular responses to external mechanical loadings and of the process of mechanical signal transduction in living cells. It would help us to enhance knowledge of and insight into the role of mechanical forces in supporting tissue regeneration or degeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Layered materials exhibit intriguing electronic characteristics and the search for new types of two-dimensional (2D) structures is of importance for future device fabrication. Using state-of-art first principle calculations, we identify and characterize the structural and electronic properties of two 2D layered arsenic materials, namely, arsenic and its alloy AsSb. The stable 2D structural configuration of arsenic is confirmed to be the low-buckled two-dimensional hexagonal structure by phonon and binding energy calculations. The monolayer exhibits indirect semiconducting properties with gap around 1.5 eV (corrected to 2.2 eV by hybrid function), which can be modulated into a direct semiconductor within a small amount of tensile strain. These semiconducting properties are preserved when cutting into 1D nanoribbons, but the band gap is edge dependent. It is interesting to find that an indirect to direct gap transition can be achieved under strain modulation of the armchair ribbon. Essentially the same phenomena can be found in layered AsSb, except a weak Rashba induced band splitting is present in AsSb due to the nonsymmetric structure and spin orbit coupling. When an additional layer is added on the top, a semiconductor–metal transition will occur. The findings here broaden the family of 2D materials beyond graphene and transition metal dichalcogenides and provide useful information for experimental fabrication of new layered materials with possible application in optoelectronics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND There are significant disparities in cancer outcomes between Indigenous and non-Indigenous Australians. Identifying the unmet supportive care needs of Indigenous Australians with cancer is imperative to improve their cancer care. The purpose of this study was to test the psychometric properties of a supportive care needs assessment tool for Indigenous Australian (SCNAT-IP) cancer patients. METHODS The SCNAT-IP was administered to 248 Indigenous Australians diagnosed with a range of cancer types and stages, and received treatment in one of four Queensland hospitals. All 39 items were assessed for ceiling and floor effects and analysed using exploratory factor analysis (EFA) to determine construct validity. Identified factors were assessed for internal consistency and convergent validity to validated psychosocial tools. RESULTS EFA revealed a four-factor structure (physical and psychological, hospital care, information and communication, and practical and cultural needs) explaining 51% of the variance. Internal consistency of four subscales was good, with Cronbach Alpha reliability coefficients ranging from 0.70-0.89. Convergent validity was supported by significant correlations between the SCNAT-IP with the Distress Thermometer (r=0.60, p<0.001), and The Cancer Worry Chart (r=0.58, p<0.001) and a moderately strong negative correlation with Assessment of Quality of Life questionnaire (r=-0.56, p<0.001). CONCLUSION These data provide initial support for the SCNAT-IP a measure of multiple supportive care needs domains specific to Indigenous Australian cancer patients undergoing treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During Pavlovian auditory fear conditioning a previously neutral auditory stimulus (CS) gains emotional significance through pairing with a noxious unconditioned stimulus (US). These associations are believed to be formed by way of plasticity at auditory input synapses on principal neurons of the lateral nucleus of the amygdala (LA). While the LA has been implicated as a key brain structure for fear learning, how its network of cellular components performs these operations is not yet known...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four silanes, trimethylchlorosilane (TMCS), dimethyldiethoxylsilane (DMDES), 3-aminopropyltriethoxysilane (APTES) and tetraethoxysilane (TEOS), were adopted to graft layered double hydroxides (LDH) via an induced hydrolysis silylation method (IHS). Fourier transform infrared spectra (FTIR) and 29Si MAS nuclear magnetic resonance spectra (29Si MAS NMR) indicated that APTES and TEOS can be grafted onto LDH surfaces via condensation with hydroxyl groups of LDH, while TMCS and DMDES could only be adsorbed on the LDH surface with a small quantity. A combination of X-ray diffraction patterns (XRD) and 29Si MAS NMR spectra showed that silanes were exclusively present in the external surface and had little influence on the long range order of LDH. The surfactant intercalation experiment indicated that the adsorbed and/or grafted silane could not fix the interlamellar spacing of the LDH. However, they will form crosslink between the particles and affect the further surfactant intercalation in the silylated samples. The replacement of water by ethanol in the tactoids and/or aggregations and the polysiloxane oligomers formed during silylation procedure can dramatically increase the value of BET surface area (SBET) and total pore volumes (Vp) of the products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural features of fatty acids in biodiesel, including degree of unsaturation, percentage of saturated fatty acids and average chain length, influence important fuel properties such as cetane number, iodine value, density, kinematic viscosity, higher heating value and oxidation stability. The composition of fatty acid esters within the fuel should therefore be in the correct ratio to ensure fuel properties are within international biodiesel standards such as ASTM 6751 or EN 14214. This study scrutinises the influence of fatty acid composition and individual fatty acids on fuel properties. Fuel properties were estimated based on published equations, and measured according to standard procedure ASTM D6751 and EN 14214 to confirm the influences of the fatty acid profile. Based on fatty acid profile-derived calculations, the cetane number of the microalgal biodiesel was estimated to be 11.6, but measured 46.5, which emphasises the uncertainty of the method used for cetane number calculation. Multi-criteria decision analysis (MCDA), PROMETHEE-GAIA, was used to determine the influence of individual fatty acids on fuel properties in the GAIA plane. Polyunsaturated fatty acids increased the iodine value and had a negative influence on cetane number. Kinematic viscosity was negatively influenced by some long chain polyunsaturated fatty acids such as C20:5 and C22:6 and some of the more common saturated fatty acids C14:0 and C18:0. The positive impact of average chain length on higher heating value was also confirmed in the GAIA plane

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pebble matrix filtration (PMF) is a water treatment technology that can remove suspended solids in highly turbid surface water during heavy storms. PMF typically uses sand and natural pebbles as filter media. Hand-made clay pebbles (balls) can be used as alternatives to natural pebbles in PMF treatment plants, where natural pebbles are not readily available. Since the high turbidity is a seasonal problem that occurs during heavy rains, the use of newly developed composite clay balls instead of pure clay balls have the advantage of removing other pollutants such as natural organic matter (NOM) during other times. Only the strength properties of composite clay balls are described here as the pollutant removal is beyond the scope of this paper. These new composite clay balls must be able to withstand dead and live loads under dry and saturated conditions in a filter assembly. Absence of a standard ball preparation process and expected strength properties of composite clay balls were the main reasons behind the present study. Five different raw materials from industry wastes: Red Mud (RM), Water Treatment Alum Sludge (S), Shredded Paper (SP), Saw Dust (SD), and Sugar Mulch (SM) were added to common clay brick mix (BM) in different proportions. In an effort to minimize costs, in this study clay balls were fired to 1100 0C at a local brick factory together with their bricks. A comprehensive experimental program was performed to evaluate crushing strength of composite hand-made clay balls, using uniaxial compression test to establish the best material combination on the basis of strength properties for designing sustainable filter media for water treatment plants. Performance at both construction and operating stages were considered by analyzing both strength properties under fully dry conditions and strength degradation after saturation in a water bath. The BM-75% as the main component produced optimum combination in terms of workability and strength. With the material combination of BM-75% and additives-25%, the use of Red Mud and water treatment sludge as additives produced the highest and lowest strength of composite clay balls, with a failure load of 5.4 kN and 1.4 kN respectively. However, this lower value of 1.4 kN is much higher than the effective load on each clay ball of 0.04 kN in a typical filter assembly (safety factor of 35), therefore, can still be used as a suitable filter material for enhanced pollutant removal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By taking the advantage of the excellent mechanical properties and high specific surface area of graphene oxide (GO) sheets, we develop a simple and effective strategy to improve the interlaminar mechanical properties of carbon fiber reinforced plastic (CFRP) laminates. With the incorporation of graphene oxide reinforced epoxy interleaf into the interface of CFRP laminates, the Mode-I fracture toughness and resistance were greatly increased. The experimental results of double cantilever beam (DCB) tests demonstrated that, with 2 g/m2 addition of GO, the Mode-I fracture toughness and resistance of the specimen increase by 170.8% and 108.0%, respectively, compared to those of the plain specimen. The improvement mechanisms were investigated by the observation of fracture surface with scanning electron microscopies. Moreover, finite element analyses were performed based on the cohesive zone model to verify the experimental fracture toughness and to predict the interfacial tensile strength of CFRP laminates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cross-link density, microstructure and mechanical properties of styrene butadiene rubber (SBR) composites filled with different particle sized kaolinites are investigated. With the increase of kaolinite particle size, the cross-link density of the filled SBR composites, the dispersibility and orientation degree of kaolinite particles gradually decrease. Some big cracks in filled rubber composites are distributed along the fringe of kaolinite aggregates, and the absorbance of all the absorption bands of kaolinites gradually increase with the increase of kaolinite particle size. All mechanical property indexes of kaolinite filled SBR composites decrease due to the decrease of cross-linking and reduction of interface interaction between filler and rubber matrix.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drying of food materials offers a significant increase in the shelf life of food materials, along with the modification of quality attributes due to simultaneous heat and mass transfer. Shrinkage and variations in porosity are the common micro and microstructural changes that take place during the drying of mostly the food materials. Although extensive research has been carried out on the prediction of shrinkage and porosity over the time of drying, no single model exists which consider both material properties and process condition in the same model. In this study, an attempt has been made to develop and validate shrinkage and porosity models of food materials during drying considering both process parameters and sample properties. The stored energy within the sample, elastic potential energy, glass transition temperature and physical properties of the sample such as initial porosity, particle density, bulk density and moisture content have been taken into consideration. Physical properties and validation have been made by using a universal testing machine ( Instron 2kN), a profilometer (Nanovea) and a pycnometer. Apart from these, COMSOL Multiphysics 4.4 has been used to solve heat and mass transfer physics. Results obtained from models of shrinkage and porosity is quite consistent with the experimental data. Successful implementation of these models would ensure the use of optimum energy in the course of drying and better quality retention of dried foods.