928 resultados para physiological specialization
Resumo:
Mammalian members of the proton-coupled oligopeptide transporter family (SLC15) are integral membrane proteins that mediate the cellular uptake of di/tripeptides and peptide-like drugs. The driving force for uphill electrogenic symport is the chemical gradient and membrane potential which favors proton uptake into the cell along with the peptide/mimetic substrate. The peptide transporters are responsible for the absorption and conservation of dietary protein digestion products in the intestine and kidney, respectively, and in maintaining homeostasis of neuropeptides in the brain. They are also responsible for the absorption and disposition of a number of pharmacologically important compounds including some aminocephalosporins, angiotensin-converting enzyme inhibitors, antiviral prodrugs, and others. In this review, we provide updated information on the structure-function of PepT1 (SLC15A1), PepT2 (SLC15A2), PhT1 (SLC15A4) and PhT2 (SLC15A3), and their expression and localization in key tissues. Moreover, mammalian peptide transporters are discussed in regard to pharmacogenomic and regulatory implications on host pharmacology and disease, and as potential targets for drug delivery. Significant emphasis is placed on the evolving role of these peptide transporters as elucidated by studies using genetically modified animals. Whenever possible, the relevance of drug-drug interactions and regulatory mechanisms are evaluated using in vivo studies.
Resumo:
Urea transporters (UTs) belonging to the solute carrier 14 (SLC14) family comprise two genes with a total of eight isoforms in mammals, UT-A1 to -A6 encoded by SLC14A2 and UT-B1 to -B2 encoded by SLC14A1. Recent efforts have been directed toward understanding the molecular and cellular mechanisms involved in the regulation of UTs using transgenic mouse models and heterologous expression systems, leading to important new insights. Urea uptake by UT-A1 and UT-A3 in the kidney inner medullary collecting duct and by UT-B1 in the descending vasa recta for the countercurrent exchange system are chiefly responsible for medullary urea accumulation in the urinary concentration process. Vasopressin, an antidiuretic hormone, regulates UT-A isoforms via the phosphorylation and trafficking of the glycosylated transporters to the plasma membrane that occurs to maintain equilibrium with the exocytosis and ubiquitin-proteasome degradation pathways. UT-B isoforms are also important in several cellular functions, including urea nitrogen salvaging in the colon, nitric oxide pathway modulation in the hippocampus, and the normal cardiac conduction system. In addition, genomic linkage studies have revealed potential additional roles for SLC14A1 and SLC14A2 in hypertension and bladder carcinogenesis. The precise role of UT-A2 and presence of the urea recycling pathway in normal kidney are issues to be further explored. This review provides an update of these advances and their implications for our current understanding of the SLC14 UTs.
Resumo:
INTRODUCTION We aimed to manipulate physiological determinants of severe exercise performance. We hypothesized that (1) beta-alanine supplementation would increase intramuscular carnosine and buffering capacity and dampen acidosis during severe cycling, (2) that high-intensity interval training (HIT) would enhance aerobic energy contribution during severe cycling, and (3) that HIT preceded by beta-alanine supplementation would have greater benefits. METHODS Sixteen active men performed incremental cycling tests and 90-s severe (110 % peak power) cycling tests at three time points: before and after oral supplementation with either beta-alanine or placebo, and after an 11-days HIT block (9 sessions, 4 × 4 min), which followed supplementation. Carnosine was assessed via MR spectroscopy. Energy contribution during 90-s severe cycling was estimated from the O2 deficit. Biopsies from m. vastus lateralis were taken before and after the test. RESULTS Beta-alanine increased leg muscle carnosine (32 ± 13 %, d = 3.1). Buffering capacity and incremental cycling were unaffected, but during 90-s severe cycling, beta-alanine increased aerobic energy contribution (1.4 ± 1.3 %, d = 0.5), concurrent with reduced O2 deficit (-5.0 ± 5.0 %, d = 0.6) and muscle lactate accumulation (-23 ± 30 %, d = 0.9), while having no effect on pH. Beta-alanine also enhanced motivation and perceived state during the HIT block. There were no between-group differences in adaptations to the training block, namely increased buffering capacity (+7.9 ± 11.9 %, p = 0.04, d = 0.6, n = 14) and glycogen storage (+30 ± 47 %, p = 0.04, d = 0.5, n = 16). CONCLUSIONS Beta-alanine did not affect buffering considerably, but has beneficial effects on severe exercise metabolism as well as psychological parameters during intense training phases.
Resumo:
Residents of the European College of Veterinary Public Health (ECVPH) carried out a survey to explore the expectations and needs of potential employers of ECVPH diplomates and to assess the extent to which the ECVPH post-graduate training program meets those requirements. An online questionnaire was sent to 707 individuals working for universities, government organizations, and private companies active in the field of public health in 16 countries. Details on the structure and activities of the participants' organizations, their current knowledge of the ECVPH, and potential interest in employing veterinary public health (VPH) experts or hosting internships were collected. Participants were requested to rate 22 relevant competencies according to their importance for VPH professionals exiting the ECVPH training. A total of 138 completed questionnaires were included in the analysis. While generic skills such as "problem solving" and "broad horizon and inter-/multidisciplinary thinking" were consistently given high grades by all participants, the importance ascribed to more specialized skills was less homogeneous. The current ECVPH training more closely complies with the profile sought in academia, which may partly explain the lower employment rate of residents and diplomates within government and industry sectors. The study revealed a lack of awareness of the ECVPH among public health institutions and demonstrated the need for greater promotion of this veterinary specialization within Europe, both in terms of its training capacity and the professional skill-set of its diplomates. This study provides input for a critical revision of the ECVPH curriculum and the design of post-graduate training programs in VPH.
Resumo:
BACKGROUND: The flower gene has been previously linked to the elimination of slow dividing epithelial cells during development in a process known as "cell competition." During cell competition, different isoforms of the Flower protein are displayed at the cell membrane and reveal the reduced fitness of slow proliferating cells, which are therefore recognized, eliminated, and replaced by their normally dividing neighbors. This mechanism acts as a "cell quality" control in proliferating tissues. RESULTS: Here, we use the Drosophila eye as a model to study how unwanted neurons are culled during retina development and find that flower is required and sufficient for the recognition and elimination of supernumerary postmitotic neurons, contained within incomplete ommatidia units. This constitutes the first description of the "Flower Code" functioning as a cell selection mechanism in postmitotic cells and is also the first report of a physiological role for this cell quality control machinery. CONCLUSIONS: Our results show that the "Flower Code" is a general system to reveal cell fitness and that it may play similar roles in creating optimal neural networks in higher organisms. The Flower Code seems to be a more general mechanism for cell monitoring and selection than previously recognized.
Resumo:
The c-mos proto-oncogene, which is expressed at relatively high levels in male and female germ cells, plays a key role in oocyte meiotic maturation. The c-mos gene product in oocytes (p39$\sp{\rm c-mos}$) is necessary and sufficient to initiate meiosis. p39$\sp{\rm c-mos}$ is also an essential component of the cytostatic factor, which is responsible for arresting vertebrate oocytes at the second meiotic metaphase by stabilizing the maturation promoting factor (MPF). MPF is a universal regulator of both meiosis and mitosis. Much less is understood about c-mos expression and function in somatic cells. In addition to gonadal tissues, c-Mos has been detected in some somatic tissues and non-germ cell lines including NIH 3T3 cells as a protein termed p43$\sp{\rm c-mos}$. Since c-mos RNA transcripts were not previously detected in this cell line by Northern blot or S1 protection analyses, a search was made for c-mos RNA in NIH 3T3 cells. c-mos transcripts were detected using the highly sensitive RNA-PCR method and RNase protection assays. Furthermore, cell cycle analyses indicated that expression of c-mos RNA is tightly controlled in a cell cycle dependent manner with highest levels of transcripts (approximately 5 copies/cell) during the G2 phase.^ In order to determine the physiological significance of c-mos RNA expression in somatic cells, antisense mos was placed under the control of an inducible promoter and introduced into either NIH 3T3 cells or C2 cells. It was found that a basal level of expression of antisense mos resulted in interference with mitotic progression and growth arrest. Several nuclear abnormalities were observed, especially the appearance of binucleated and multinucleated cells as well as the extrusion of microvesicles containing cellular material. These results indicate that antisense mos expression results in a block in cytokinesis. In summary, these results establish that c-mos expression is not restricted to germ cells, but instead indicate that c-mos RNA expression occurs during the G2 stage of the cell cycle. Furthermore, these studies demonstrate that the c-mos proto-oncogene plays an important role in cell cycle progression. As in meiosis, c-mos may have a similar but not identical function in regulating cell cycle events in somatic cells, particularly in controlling mitotic progression via activation/stabilization of MPF. ^
Resumo:
The aim was to investigate the effect of mechanical pain stimulation at the lower back on hemodynamic and oxygenation changes in the prefrontal cortex (PFC) assessed by functional near-infrared spectroscopy (fNIRS) and on the partial pressure of end-tidal carbon dioxide ( PetCO 2) measured by capnography. 13 healthy subjects underwent three measurements (M) during pain stimulation using pressure pain threshold (PPT) at three locations, i.e., the processus spinosus at the level of L4 (M1) and the lumbar paravertebral muscles at the level of L1 on the left (M2) and the right (M3) side. Results showed that only in the M2 condition the pain stimulation elicited characteristic patterns consisting of (1) a fNIRS-derived decrease in oxy- and total hemoglobin concentration and tissue oxygen saturation, an increase in deoxy-hemoglobin concentration, (2) a decrease in the PetCO 2 response and (3) a decrease in coherence between fNIRS parameters and PetCO 2 responses in the respiratory frequency band (0.2-0.5 Hz). We discuss the comparison between M2 vs. M1 and M3, suggesting that the non-significant findings in the two latter measurements were most likely subject to effects of the different stimulated tissues, the stimulated locations and the stimulation order. We highlight that PetCO 2 is a crucial parameter for proper interpretation of fNIRS data in experimental protocols involving pain stimulation. Together, our data suggest that the combined fNIRS-capnography approach has potential for further development as pain monitoring method, such as for evaluating clinical pain treatment.
Resumo:
Climate models predict more frequent and more severe extreme events (e.g., heat waves, extended drought periods, flooding) in many regions for the next decades. The impact of adverse environmental conditions on crop plants is ecologically and economically relevant. This review is focused on drought and heat effects on physiological status and productivity of agronomically important plants. Stomatal opening represents an important regulatory mechanism during drought and heat stress since it influences simultaneously water loss via transpiration and CO2 diffusion into the leaf apoplast which further is utilized in photosynthesis. Along with the reversible short-term control of stomatal opening, stomata and leaf epidermis may produce waxy deposits and irreversibly down-regulate the stomatal conductance and non-stomatal transpiration. As a consequence photosynthesis will be negatively affected. Rubisco activase—a key enzyme in keeping the Calvin cycle functional—is heat-sensitive and may become a limiting factor at elevated temperature. The accumulated reactive oxygen species (ROS) during stress represent an additional challenge under unfavorable conditions. Drought and heat cause accumulation of free amino acids which are partially converted into compatible solutes such as proline. This is accompanied by lower rates of both nitrate reduction and de novo amino acid biosynthesis. Protective proteins (e.g., dehydrins, chaperones, antioxidant enzymes or the key enzyme for proline biosynthesis) play an important role in leaves and may be present at higher levels under water deprivation or high temperatures. On the whole plant level, effects on long-distance translocation of solutes via xylem and phloem and on leaf senescence (e.g., anticipated, accelerated or delayed senescence) are important. The factors mentioned above are relevant for the overall performance of crops under drought and heat and must be considered for genotype selection and breeding programs.
Resumo:
Advertisement for any dental treatment was rare in Switzerland. Then the use of digital media became popular, particularly in the field of implant- and esthetic-dentistry. In parallel to the dental schools of public universities, private universities and companies built up centers for continuing education that issue specialists diplomas and M.Sc. degrees. Prosthodontics itself is characterized by many sub-disciplines that incorporated their own associations. These also offer graduate training curricula which diminish the significance of specialization in prosthodontics. Specialized prosthodontists do not have a financial benefit in Switzerland where dentistry is not supported by any insurance. In other European countries funding of prosthodontic treatment depends on their healthcare systems. There are four specialties in Dentistry recognized by the European Union (EU). Specialization in prosthodontics was introduced in Sweden already in 1982 and today it is declared in about 20 European countries, while for others no recognized program exists. Thus there are great variations with more recognized specialists in former east European countries. In Switzerland the prosthodontic specialization curriculum was developed and guided by the Swiss Society for Reconstructive Dentistry, and only in 2001 it became fully acknowledged by the Federal Department of Health. The four Swiss Universities offer the 3-year program under the supervision of the society, while the government remains the executive body. In 2003 EPA tried to set up guidelines and quality standards for an EPA recognized specialization. In spite of these attempts and the Bologna Reform in Europe, it appears that the quality standards and the level of education still may differ significantly among European countries.
Resumo:
The aim of the present study was to investigate the effects of an acute physical activity intervention that included cognitive engagement on executive functions and on cortisol level in young elementary school children. Half of the 104 participating children (6–8 years old) attended a 20-min sport sequence, which included cognitively engaging and playful forms of physical activity. The other half was assigned to a resting control condition. Individual differences in children's updating, inhibition, and shifting performance as well as salivary cortisol were assessed before (pre-test), immediately after (post-test), and 40 min after (follow-up) the intervention or control condition, respectively. Results revealed a significantly stronger improvement in inhibition in the experimental group compared to the control group, while it appeared that acute physical activity had no specific effect on updating and shifting. The intervention effect on inhibition leveled out 40 min after physical activity. Salivary cortisol increased significantly more in the experimental compared to the control group between post-test and follow-up and results support partly the assumed inverted U-shaped relationship between cortisol level and cognitive performance. In conclusion, results indicate that acute physical activity that includes cognitive engagement may have immediate positive effects on inhibition, but not necessarily on updating and shifting in elementary school children. This positive effect may partly be explained through cortisol elevation after acute physical activity.
Resumo:
AIM It is unknown how the heart distinguishes various overloads, such as exercise or hypertension, causing either physiological or pathological hypertrophy. We hypothesize that alpha-calcitonin-gene-related peptide (αCGRP), known to be released from contracting skeletal muscles, is key at this remodelling. METHODS The hypertrophic effect of αCGRP was measured in vitro (cultured cardiac myocytes) and in vivo (magnetic resonance imaging) in mice. Exercise performance was assessed by determination of maximum oxygen consumption and time to exhaustion. Cardiac phenotype was defined by transcriptional analysis, cardiac histology and morphometry. Finally, we measured spontaneous activity, body fat content, blood volume, haemoglobin mass and skeletal muscle capillarization and fibre composition. RESULTS While αCGRP exposure yielded larger cultured cardiac myocytes, exercise-induced heart hypertrophy was completely abrogated by treatment with the peptide antagonist CGRP(8-37). Exercise performance was attenuated in αCGRP(-/-) mice or CGRP(8-37) treated wild-type mice but improved in animals with higher density of cardiac CGRP receptors (CLR-tg). Spontaneous activity, body fat content, blood volume, haemoglobin mass, muscle capillarization and fibre composition were unaffected, whereas heart index and ventricular myocyte volume were reduced in αCGRP(-/-) mice and elevated in CLR-tg. Transcriptional changes seen in αCGRP(-/-) (but not CLR-tg) hearts resembled maladaptive cardiac phenotype. CONCLUSIONS Alpha-calcitonin-gene-related peptide released by skeletal muscles during exercise is a hitherto unrecognized effector directing the strained heart into physiological instead of pathological adaptation. Thus, αCGRP agonists might be beneficial in heart failure patients.
Resumo:
PURPOSE Fixation of anterior cruciate ligament (ACL) substitutes with non-physiological anteroposterior translation (APT) worsens outcome. The aim was to present a technique for physiological APT adjustment of the transplant in ACL reconstruction and its outcome at midterm. METHODS In a consecutive series of 28 patients (age 32 ± 11 years, 24 male), chronic ACL deficiency was treated by bone-patella-tendon-bone reconstruction. Transplant APT was adjusted to that of the contralateral uninjured ACL, measured 3, 6, and 12 months postoperatively using the Rolimeter. At a median follow-up of 5.3 years (3-8 years), 82% of the patients were re-evaluated with APT measurement and using IKDC-, Tegner-, Lysholm-Scores, conventional radiographs and MRI. RESULTS No differences in APT (mean ± SD) between uninjured and reconstructed knees were observed after adjustment (6 ± 1 versus 6 ± 1 mm, n.s.). Three months postoperatively, a statistically significant increase in APT (7 ± 1 mm) and a further increase at midterm (9 ± 2 mm) were observed. Patients scored "normal" or "nearly normal", respectively, in 79% (IKDC) and 4 (3-9) points (Tegner; median, range) or 89 ± 9 points (Lysholm; mean ± SD). Radiological evaluation showed no, minimal or moderate joint degeneration in 5, 20 and 75% of patients, respectively. MRI confirmed intact ACL transplants in all patients. CONCLUSION ACL reconstruction using the presented technique was considered successful, as patients did not suffer from subjective instability, radiographic analysis did not provide evidence for graft rupture at midterm. However, APT increase and occurrence of degenerative changes in reconstructed knees at the midterm might not be prevented even by restoration of a physiological APT in ACL reconstruction. The Rolimeter can be used for quick and easy intraoperative indirect control of the applied tension to the ACL transplant by measuring the APT to obtain physiological tensioning resulting in a satisfying outcome at midterm. LEVEL OF EVIDENCE IV.
Resumo:
Objective: The quality of teamwork depends not only on communication skills but also on team familiarity and hierarchical structures. The aim of the present study is to evaluate the physiological impact of close teamwork between senior and junior surgeons performing elective open abdominal surgery for six months in stable teams. Methods: Physiological measurements of the main and junior surgeons were taken in a total of 40 procedures. Cumulative stress was assessed by the mea- surements of urine catecholamines (Adrenaline, Noradrenaline, Dopamine, Metanephrine, Normetanephrine). Heart rate variability was measured to assess temporal aspects of stress. The procedures were observed by a trained team of work psychologists. Direct observations of distractors, team inter- actions and communication were performed. Specific questionnaires were filled by members of the surgical team that include surgeons, nurses and anesthetists. Results: In junior surgeons, physiological stress is reduced over a period of close collaboration. Case-related communication is not stressful. However, tension within the surgical team is associated with increased levels of cat- echolamine in the urine of the senior surgeon. The difficulty of the oper- ation impacts on heart-rate variability of the junior but not of the senior surgeon. Conclusion: Junior surgeons may require months of teamwork within one stable team in order to reduce levels of physiological stress. Senior surgeons are more resistant to stressful clinical situations compared to junior surgeons but are vulnerable to tension within the surgical team.