989 resultados para phosphorus Everglades
Resumo:
In this study we investigate benthic phosphorus cycling in recent continental margin sediments at three sites off the Namibian coastal upwelling area. Examination of the sediments reveals that organic and biogenic phosphorus are the major P-containing phases preserved. High Corg/Porg ratios just at the sediment surface suggest that the preferential regeneration of phosphorus relative to that of organic carbon has either already occurred on the suspension load or that the organic matter deposited at these sites is already rather refractory. Release of phosphate in the course of benthic microbial organic matter degradation cannot be identified as the dominating process within the observed internal benthic phosphorus cycle. Dissolved phosphate and iron in the pore water are closely coupled, showing high concentrations below the oxygenated surface layer of the sediments and low concentrations at the sediment-water interface. The abundant presence of Fe(III)-bound phosphorus in the sediments document the co-precipitation of both constituents as P-containing iron (oxyhydr)oxides. However, highly dissolved phosphate concentrations in pore waters cannot be explained, neither by simple mass balance calculations nor by the application of an established computer model. Under the assumption of steady state conditions, phosphate release rates are too high as to be balanced with a solid phase reservoir. This discrepancy points to an apparent lack of solid phase phosphorus at sediment depth were suboxic conditions prevail. We assume that the known, active, fast and episodic particle mixing by burrowing macrobenthic organisms could repeatedly provide the microbially catalyzed processes of iron reduction with authigenic iron (oxyhydro)oxides from the oxic surface sediments. Accordingly, a multiple internal cycling of phosphate and iron would result before both elements are buried below the iron reduction zone.
Resumo:
This data set contains two time series of measurements of dissolved phosphorus (organic, inorganic and total with a biweekly resolution) and dissolved inorganic phosphorus with a seasonal resolution. In addition, data on phosphorus from soil samples measured in 2007 and fractionated by different acid-extrations (Hedley fractions) are provided. All data measured at the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. 1. Dissolved phosphorus in soil solution: Suction plates installed on the field site in 10, 20, 30 and 60 cm depth were used to sample soil pore water. Cumulatively extracted soil solution was collected every two weeks from October 2002 to May 2006. The biweekly samples from 2002, 2003 and 2004 were analyzed for dissolved organic phosphorus (DOP), dissolved inorganic phosphorus (PO4P) and dissolved total phosphorus (TDP) by Continuous Flow Analyzer (CFA SAN ++, SKALAR [Breda, The Netherlands]). 2. Seasonal values of dissolved inorganic phosphorus in soil solution were calculated as volume-weighted mean values of the biweekly measurements (spring = March to May, summer = June to August, fall = September to November, winter = December to February). 3. Phosphorus fractions in soil: Five independent soil samples per plot were taken in a depth of 0-15 cm using a soil corer with an inner diameter of 1 cm. The five samples per plot were combined to one composite sample per plot. A four-step sequential P fractionation (Hedley fractions) was applied and concentrations of P fractions in soil were measured photometrically (molybdenum blue-reactive P) with a Continuous Flow Analyzer (Bran&Luebbe, Germany).
Resumo:
This data set contains measurements of inorganic phosphorus in samples of soil solution collected in 2006 from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below) that have been aggregated to seasonal values. In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Glass suction plates with a diameter of 12 cm, 1 cm thickness and a pore size of 1-1.6 µm (UMS GmbH, Munich, Germany) were installed in April 2002 in depths of 10, 20, 30 and 60 cm to collect soil solution. Manual soil matric potential measurements were used to regulate the vacuum system. Manual soil matric potential measurements were used to regulate the vacuum system. The sampling bottles were continuously evacuated to a negative pressure between 50 and 350 mbar, such that the suction pressure was about 50 mbar above the actual soil water tension. Thus, only the soil leachate was collected. Cumulative soil solution was sampled biweekly and analyzed for dissolved inorganic P (PO4P). Here volume-weighted mean values are provided as aggregated seasonal values (spring = March to May, summer = June to August, fall = September to November, winter = December to February) for 2006 in spring. To calculate these values, the sampled volume of soil solution is used as weight for P concentrations of the respective sampling date. Inorganic phosphorus concentrations in the soil solution were measured photometrically with a continuous flow analyzer (CFA Autoanalyzer [Bran&Luebbe, Norderstedt, Germany]). Ammonium molybdate catalyzed by antimony tartrate reacts in an acidic medium with phosphate and forms a phospho-molybdic acid complex. Ascorbic acid reduces this complex to an intensely blue-colored complex. As the molybdic complex forms under strongly acidic conditions, we could not exclude the hydrolysis of labile organic P compounds in our samples. Furthermore, the molybdate reaction is not sensitive for condensed phosphates. The detection limits of both TDP and PO4P were 0.04 mg P l-1 (Autoanalyzer, Bran&Luebbe).
Resumo:
This data set contains measurements of dissolved phosphorus (total dissolved nitrogen: TDP, dissolved inorganic phosphorus: PO4P and dissolved organic phosphorus: DOP) in samples of soil water collected in 2003 from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Glass suction plates with a diameter of 12 cm, 1 cm thickness and a pore size of 1-1.6 mm (UMS GmbH, Munich, Germany) were installed in April 2002 in depths of 10, 20, 30 and 60 cm to collect soil solution. Manual soil matric potential measurements were used to regulate the vacuum system. The sampling bottles were continuously evacuated to a negative pressure between 50 and 350 mbar, such that the suction pressure was about 50 mbar above the actual soil water tension. Thus, only the soil leachate was collected. Cumulative soil solution was sampled bi-weekly, in 2003 at the 07.03.2003; 24.03.2003; 07.04.2003; 22.04.2003; 07.05.2003; 20.05.2003; 03.06.2003; 28.07.2003; 12.09.2003; 22.09.2003; 07.10.2003; and 21.10.2003, and analyzed for dissolved inorganic P (PO4P) and total dissolved phosphorus (TDP). Inorganic phosphorus concentrations in the soil solution were measured photometrically with a continuous flow analyzer (CFA SAN++, Skalar [Breda, The Netherlands]). Ammonium molybdate catalyzed by antimony tartrate reacts in an acidic medium with phosphate and forms a phospho-molybdic acid complex. Ascorbic acid reduces this complex to an intensely blue-colored complex. Total dissolved P in soil solution was analyzed by irradiation with UV and oxidation with K2S2O8 followed by reaction with ammonium molybdate (Skalar catnr. 503-553w/r). As the molybdic complex forms under strongly acidic conditions, we could not exclude the hydrolysis of labile organic P compounds in our samples. Furthermore, the molybdate reaction is not sensitive for condensed phosphates. The detection limits of both TDP and PO4P were 0.02 mg P l-1 (CFA, Skalar). Dissolved organic P (DOP) in soil solution was calculated as the difference between TDP and PO4P. In a low number of samples, TDP was equal to or smaller than PO4P; in these cases, DOP was assumed to be zero.
Resumo:
This data set contains measurements of dissolved phosphorus (total dissolved nitrogen: TDP, dissolved inorganic phosphorus: PO4P and dissolved organic phosphorus: DOP) in samples of soil water collected in 2004 from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Glass suction plates with a diameter of 12 cm, 1 cm thickness and a pore size of 1-1.6 µm (UMS GmbH, Munich, Germany) were installed in April 2002 in depths of 10, 20, 30 and 60 cm to collect soil solution. Manual soil matric potential measurements were used to regulate the vacuum system. The sampling bottles were continuously evacuated to a negative pressure between 50 and 350 mbar, such that the suction pressure was about 50 mbar above the actual soil water tension. Thus, only the soil leachate was collected. Cumulative soil solution was sampled bi-weekly, in 2004 at the 15.01.2004; 30.01.2004; 12.02.2004; 27.02.2004; 09.03.2004; 25.03.2004; 21.04.2004; 07.05.2004; and 24.05.2004, and analyzed for dissolved inorganic P (PO4P) and total dissolved phosphorus (TDP). Inorganic phosphorus concentrations in the soil solution were measured photometrically with a continuous flow analyzer (for samples collected until spring 2004: CFA SAN++, Skalar [Breda, The Netherlands]; for samples collected later: CFA Autoanalyzer [Bran&Luebbe, Norderstedt, Germany]). Ammonium molybdate catalyzed by antimony tartrate reacts in an acidic medium with phosphate and forms a phospho-molybdic acid complex. Ascorbic acid reduces this complex to an intensely blue-colored complex. Total dissolved P in soil solution was analyzed by irradiation with UV and oxidation with K2S2O8 followed by reaction with ammonium molybdate (Skalar catnr. 503-553w/r). As the molybdic complex forms under strongly acidic conditions, we could not exclude the hydrolysis of labile organic P compounds in our samples. Furthermore, the molybdate reaction is not sensitive for condensed phosphates. The detection limits of both TDP and PO4P were 0.02 mg P l-1 (CFA, Skalar) and 0.04 mg P l-1 (Autoanalyzer, Bran&Luebbe). Dissolved organic P (DOP) in soil solution was calculated as the difference between TDP and PO4P. In a low number of samples, TDP was equal to or smaller than PO4P; in these cases, DOP was assumed to be zero.
Resumo:
This data set contains measurements of inorganic phosphorus in samples of soil solution collected in 2004 from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below) that have been aggregated to seasonal values. In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Glass suction plates with a diameter of 12 cm, 1 cm thickness and a pore size of 1-1.6 µm (UMS GmbH, Munich, Germany) were installed in April 2002 in depths of 10, 20, 30 and 60 cm to collect soil solution. Manual soil matric potential measurements were used to regulate the vacuum system. Manual soil matric potential measurements were used to regulate the vacuum system. The sampling bottles were continuously evacuated to a negative pressure between 50 and 350 mbar, such that the suction pressure was about 50 mbar above the actual soil water tension. Thus, only the soil leachate was collected. Cumulative soil solution was sampled biweekly and analyzed for dissolved inorganic P (PO4P). Here volume-weighted mean values are provided as aggregated seasonal values (spring = March to May, summer = June to August, fall = September to November, winter = December to February) for 2004 in spring, fall, and winter. To calculate these values, the sampled volume of soil solution is used as weight for P concentrations of the respective sampling date. Inorganic phosphorus concentrations in the soil solution were measured photometrically with a continuous flow analyzer (for samples collected until spring 2004: CFA SAN++, Skalar [Breda, The Netherlands]; for samples collected later: CFA Autoanalyzer [Bran&Luebbe, Norderstedt, Germany]). Ammonium molybdate catalyzed by antimony tartrate reacts in an acidic medium with phosphate and forms a phospho-molybdic acid complex. Ascorbic acid reduces this complex to an intensely blue-colored complex. As the molybdic complex forms under strongly acidic conditions, we could not exclude the hydrolysis of labile organic P compounds in our samples. Furthermore, the molybdate reaction is not sensitive for condensed phosphates. The detection limits of both TDP and PO4P were 0.02 mg P l-1 (CFA, Skalar) and 0.04 mg P l-1 (Autoanalyzer, Bran&Luebbe).
Resumo:
This data set contains measurements of phosphorus fractions (Hedley fractions) in soil collected 2007 from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Soil sampling and analysis: Five independent soil samples per plot were taken in a depth of 0-15 cm using a soil corer with an inner diameter of 1 cm. The five samples per plot were combined to one composite sample per plot. A four-step sequential P fractionation (Hedley fractions) was applied. Sequentially, 20 ml NaHCO3 (adjusted to pH 8.5), 30 ml NaOH, and 35 ml HCl were used as extraction solutions for 0.5 g soil. The last step comprised the combustion (550 °C) of the remaining soil to destroy all organic material followed by shaking with 20 ml H2SO4. Organic P concentrations of the respective fractions were calculated as the difference between total dissolved P and inorganic P. Duplicate phosphate concentrations of P fractions in soil were measured photometrically (molybdenum blue-reactive P) with a Continuous Flow Analyzer (Bran&Luebbe, Germany).
Resumo:
In the literature, an inconsistency exists between estimates of biotically-effected carbon export inferred from large-scale geochemical studies (Jenkins 1982; 47 gC m-2 a-1) and local measurements of turbulent nutrient supply (Lewis et al. 1986; 4 gC m-2 a-1) in the eastern subtropical North Atlantic. Nutrient supply to the upper ocean by turbulent mixing is reexamined using local standard oceanographic measurements and high-resolution vertical profiles of nutrients averaged over a large region directly comparable to that investigated by Jenkins (1982). Turbulent fluxes induced by internal waves and salt fingering, respectively, are separated according to Gregg (1989) and Zhang et al. (1998). Nutrient transport into the nutrient-consuming surface layer by salt fingering is more than fivefold higher than transport due to internal-wave induced turbulence. Still, this cannot resolve the above- mentioned apparent inconsistency, even if additional physical transport mechanisms such as eddy pumping, advection and horizontal diffusion are accounted for. Estimated nitrate fluxes due to vertical turbulent diffusion are 0.05-0.15 mol m-2 a-1, corresponding to 4-11 gC m-2 a-1. Observed NO3/PO4 turbulent flux ratios of up to 23 are interpreted as the imprint of N2 fixation.
Resumo:
Understanding phosphorus (P) geochemistry and burial in oceanic sediments is important because of the role of P for modulating oceanic productivity on long timescales. We investigated P geochemistry in seven equatorial Pacific sites over the last 53 Ma, using a sequential extraction technique to elucidate sedimentary P composition and P diagenesis within the sediments. The dominant P-bearing component in these sediments is authigenic P (61-86% of total P), followed in order of relative dominance by iron-bound P (7-17%), organic P (3-12%), adsorbed P (2-9%), and detrital P (0-1%). Clear temporal trends in P component composition exist. Organic P decreases rapidly in younger sediments in the eastern Pacific (the only sites with high sample resolution in the younger intervals), from a mean concentration of 2.3 µmol P/g sediment in the 0-1 Ma interval to 0.4 µmol/g in the 5- 6 Ma interval. Over this same time interval, decreases are also observed for iron-bound P (from 2.1 to 1.1 µmol P/g) and adsorbed P (from 1.5 to 0.7 µmol P/g). These decreases are in contrast to increases in authigenic P (from 6.0-9.6 µmol P/g) and no significant changes in detrital P (0.1 µmol P/g) and total P (12 µmol P/g). These temporal trends in P geochemistry suggest that (1) organic matter, the principal shuttle of P to the seafloor, is regenerated in sediments and releases associated P to interstitial waters, (2) P associated with iron-rich oxyhydroxides is released to interstitial waters upon microbial iron reduction, (3) the decrease in adsorbed P with age and depth probably indicates a similar decrease in interstitial water P concentrations, and (4) carbonate fluorapatite (CFA), or another authigenic P-bearing phase, precipitates due to the release of P from organic matter and iron oxyhydroxides and becomes an increasingly significant P sink with age and depth. The reorganization of P between various sedimentary pools, and its eventual incorporation in CFA, has been recognized in a variety of continental margin environments, but this is the first time these processes have been revealed in deep-sea sediments. Phosphorus accumulation rate data from this study and others indicates that the global pre-anthropogenic input rate of P to the ocean (20x10**10 mol P/yr) is about a factor of four times higher than previously thought, supporting recent suggestions that the residence time of P in the oceans may be as short as 10000-20000 years.
Resumo:
We determined changes in equatorial Pacific phosphorus (µmol P/g) and barite (BaSO4; wt%) concentrations at high resolution (2 cm) across the Paleocene/Eocene (P/E) boundary in sediments from Ocean Drilling Program (ODP) Leg 199 Site 1221 (153.40 to 154.80 meters below seafloor [mbsf]). Oxide-associated, authigenic, and organic P sequentially extracted from bulk sediment were used to distinguish reactive P from detrital P. We separated barite from bulk sediment and compared its morphology with that of modern unaltered biogenic barite to check for diagenesis. On a CaCO3-free basis, reactive P concentrations are relatively constant and high (323 µmol P/g or ~1 wt%). Barite concentrations range from 0.05 to 5.6 wt%, calculated on a CaCO3-free basis, and show significant variability over this time interval. Shipboard measurements of P and Ba in bulk sediments are systematically lower (by ~25%) than shore-based concentrations and likely indicate problems with shipboard standard calibrations. The presence of Mn oxides and the size, crystal morphology, and sulfur isotopes of barite imply deposition in sulfate-rich pore fluids. Relatively constant reactive P, organic C, and biogenic silica concentrations calculated on a CaCO3-free basis indicate generally little variation in organic C, reactive P, and biogenic opal burial across the P/E boundary, whereas variable barite concentrations indicate significant changes in export productivity. Low barite Ba/reactive P ratios before and immediately after the Benthic Extinction Event (BEE) may indicate efficient nutrient burial, and, if nutrient burial and organic C burial are linked, high relative organic C burial that could temporarily drawdown CO2 at this site. This interpretation requires postdepositional oxidation of organic C because organic C to reactive P ratios are low throughout the section. After the BEE, higher barite Ba/reactive P ratios combined with higher barite Ba concentrations may imply that higher export productivity was coupled with unchanged reactive P burial, indicating efficient nutrient and possibly also organic C recycling in the water column. If the nutrient recycling is decoupled from organic C, the high export production could be indicative of drawdown of CO2. However, the observation that organic C burial is not high where barite burial is high may imply that either C sequestration was restricted to the deep ocean and thus occurred only on timescales of the deep ocean mixing or that postdepositional oxidation (burn down) of organic matter affected the sediments. The decoupling of barite and opal may result from low opal preservation or production that is not diatom based.