977 resultados para phosphatedycholine biosynthesis
Resumo:
The biosynthesis of fusion-competent envelope glycoproteins (GPs) is a crucial step in productive viral infection. In this issue, Klaus et al. (2013) identify the cargo receptor endoplasmic reticulum (ER)-Golgi intermediate compartment 53 kDa protein (ERGIC-53) as a binding partner for viral GPs and a crucial cellular factor required for infectious virus production.
Resumo:
Nicotinamide adenine dinucleotide (NAD+) biosynthesis from nicotinamide is used by mammalian cells to replenish their NAD+ stores and to avoid unwanted nicotinamide accumulation. Pharmacological inhibition of nicotinamide phosphoribosyltransferase (NAMPT), the key enzyme in this biosynthetic pathway, almost invariably leads to intracellular NAD+ depletion and, when protracted, to ATP shortage and cell demise. Cancer cells and activated immune cells express high levels of NAMPT and are highly susceptible to NAMPT inhibitors, as shown by the activity of these agents in models of malignant and inflammatory disorders. As the spectrum of conditions which could benefit from pharmacological NAMPT inhibition becomes broader, the mechanisms accounting for their activity are also eventually becoming apparent, including the induction of autophagy and the impairment of Ca(2+) - and NF-κB-dependent signaling. Here, we discuss the rationales for exploiting NAMPT inhibitors in cancer and inflammatory diseases and provide an overview of the preclinical and clinical studies in which these agents have been evaluated.
Resumo:
We have previously reported that CD8(+)CD28(-) T cells have relatively shorter telomeres compared with CD8(+)CD28(+) T cells. Oligoclonal expansion is a common feature of CD8(+) T cells in human peripheral blood, and these expansions predominantly occur in the CD57(+)/CD28(-) population. We studied the telomere length in subsets of CD8(+) T cells using quantitative fluorescence in situ hybridization and flow cytometry (flow FISH). Our results confirm that CD8(+)CD28(-) T cells have shorter telomeres as compared with their CD28(+) counterpart cells. In addition, the oligoclonally expanded cells within the CD8(+)CD28(-) T cell subset generally have even shorter telomeres than the CD28(-) subset as a whole. We conclude that the presence of clonal expansions in the CD8(+)CD28(-) T cell population largely explain the shorter telomeres in this subset. These clonally expanded CD8(+)CD28(-) T cells generally have characteristics of terminally differentiated effector cells. Nevertheless, there is considerable individual variation in the degree of telomere shortening in these cells, which may reflect host genetic factors as well as the type and timing of the antigenic exposure.
Resumo:
The tumor necrosis factor (TNF)/TNF receptor (TNFR) families of ligands and receptors are implicated in a variety of physiological and pathological processes and regulate cellular functions as diverse as proliferation, differentiation, and death. Recombinant forms of these ligands and receptors can act to agonize or antagonize these functions and are therefore useful for laboratory studies and may have clinical applications. A protocol is presented for the expression and purification of dimeric soluble receptors fused to the Fc portion of human IgG1 and of soluble, N-terminally Flag-tagged ligands. Soluble recombinant proteins are easier to handle than membrane-bound proteins and the use of tags greatly facilitates their detection and purification. In addition, some tags may provide enhanced biological activity to the recombinant proteins (mainly by oligomerization and stabilization effects) and facilitate their functional characterization. Expression in bacterial (for selected ligands) and eukaryotic expression systems (for ligands and receptors) was performed using M15 pREP4 bacteria and human embryonic kidney 293 cells, respectively. The yield of purified protein is about 1 mg/liter for the mammalian expression system and several milligrams per liter for the bacterial expression system. Protocols are given for a specific ligand-receptor pair, namely TRAIL (Apo-2L) and TRAIL receptor 2 (DR5), but can be applied to other ligands and receptors of the TNF family.
Resumo:
BACKGROUND: After age, sex is the most important risk factor for coronary artery disease (CAD). The mechanism through which women are protected from CAD is still largely unknown, but the observed sex difference suggests the involvement of the reproductive steroid hormone signaling system. Genetic association studies of the gene-encoding Estrogen Receptor α (ESR1) have shown conflicting results, although only a limited range of variation in the gene has been investigated. METHODS AND RESULTS: We exploited information made available by advanced new methods and resources in complex disease genetics to revisit the question of ESR1's role in risk of CAD. We performed a meta-analysis of 14 genome-wide association studies (CARDIoGRAM discovery analysis, N=≈87,000) to search for population-wide and sex-specific associations between CAD risk and common genetic variants throughout the coding, noncoding, and flanking regions of ESR1. In addition to samples from the MIGen (N=≈6000), WTCCC (N=≈7400), and Framingham (N=≈3700) studies, we extended this search to a larger number of common and uncommon variants by imputation into a panel of haplotypes constructed using data from the 1000 Genomes Project. Despite the widespread expression of ERα in vascular tissues, we found no evidence for involvement of common or low-frequency genetic variation throughout the ESR1 gene in modifying risk of CAD, either in the general population or as a function of sex. CONCLUSIONS: We suggest that future research on the genetic basis of sex-related differences in CAD risk should initially prioritize other genes in the reproductive steroid hormone biosynthesis system.
Resumo:
The epithelial sodium channel (ENaC) is a key element for the maintenance of sodium balance and the regulation of blood pressure. Three homologous ENaC subunits (alpha, beta and gamma) assemble to form a highly Na+-selective channel. However, the subunit stoichiometry of ENaC has not yet been solved. Quantitative analysis of cell surface expression of ENaC alpha, beta and gamma subunits shows that they assemble according to a fixed stoichiometry, with alpha ENaC as the most abundant subunit. Functional assays based on differential sensitivities to channel blockers elicited by mutations tagging each alpha, beta and gamma subunit are consistent with a four subunit stoichiometry composed of two alpha, one beta and one gamma. Expression of concatameric cDNA constructs made of different combinations of ENaC subunits confirmed the four subunit channel stoichiometry and showed that the arrangement of the subunits around the channel pore consists of two alpha subunits separated by beta and gamma subunits.
Resumo:
The fatty acid oxygenation up-regulated 2 (fou2) mutant in Arabidopsis thaliana creates a gain-of-function allele in a non-selective cation channel encoded by the Two Pore Channel 1 (TPC1) gene. This mutant genetically implicates cation fluxes in the control of the positive feedback loop whereby jasmonic acid (JA) stimulates its own synthesis. In this study we observed extensive transcriptome reprogramming in healthy fou2 leaves closely resembling that induced by treatment with methyl jasmonate, biotic stresses and the potassium starvation response. Proteomic analysis of fou2 leaves identified increased levels of seven biotic stress- and JA-inducible proteins. In agreement with these analyses, epistasis studies performed by crossing fou2 with aos indicated that elevated levels of JA in fou2 are the major determinant of the mutant phenotype. In addition, generation of fou2 aba1-5, fou2 etr1-1 and fou2 npr1-1 double mutants showed that the fou2 phenotype was only weakly affected by ABA levels and unaffected by mutations in NPR1 and ETR1. The results now suggest possible mechanisms whereby fou2 could induce JA synthesis/signaling early in the wound response. In contrast to fou2, transcriptome analysis of a loss-of-function allele of TPC1, tpc1-2, revealed no differential expression of JA biosynthesis genes in resting leaves. However, the analysis disclosed reduced mRNA levels of the pathogenesis-related genes PDF1.2a and THI2.1 in healthy and diseased tpc1-2 leaves. The results suggest that wild-type TPC1 contributes to their expression by mechanisms somewhat different from those affecting their expression in fou2.
Resumo:
In vascular plants, the best-known feature of a differentiated endodermal cell is the "Casparian Strip" (CS). This structure refers to a highly localized cell wall impregnation in the transversal and anticlinal walls of the cell, which surrounds the cell like a belt/ring and is tightly coordinated with respect to neighboring cells. Analogous to tight junctions in animal epithelia, CS in plants act as a diffusion barrier that controls the movement of water and ions from soil into the stele. Since its first description by Robert Caspary in 1865 there have been many attempts to identify the chemical nature of the cell wall deposition in CS. Suberin, lignin, or both have been claimed to be the important components of CS in a series of different species. However, the exact chemical composition of CS has remained enigmatic. This controversy was due to the confusion and lack of knowledge regarding the precise measurement of three developmental stages of the endodermis. The CS represent only the primary stage of endodermal differentiation, which is followed by the deposition of suberin lamellae all around the cellular surface of endodermal cells (secondary developmental stage). Therefore, chemical analysis of whole roots, or even of isolated endodermal tissues, will always find both of the polymers present. It was crucial to clarify this point because this will guide our efforts to understand which cell wall biosynthetic component becomes localized in order to form the CS. The main aim of my work was to find out the major components of (early) CS, as well as their spatial and temporal development, physiological roles and relationship to barrier formation. Employing the knowledge and tools that have been accumulated over the last few years in the model plant Arabidopsis thaliana, various histological and chemical assays were used in this study. A particular feature of my work was to completely degrade, or inhibit formation of lignin and suberin biopolymers by biochemical, classical genetic and molecular approaches and to investigate its effect on CS formation and the establishment of a functional diffusion barrier. Strikingly, interference with monolignol biosynthesis abrogates CS formation and delays the formation of function diffusion barrier. In contrast, transgenic plants devoid of any detectable suberin still develop a functional CS. The combination of all these assays clearly demonstrates that the early CS polymer is made from monolignol (lignin monomers) and is composed of lignin. By contrast, suberin is formed much later as a secondary wall during development of endodermis. These early CS are functionally sufficient to block extracellular diffusion and suberin does not play important role in the establishment of early endodermal diffusion barrier. Moreover, suberin biosynthetic machinery is not present at the time of CS formation. Our study finally concludes the long-standing debate about the chemical nature of CS and opens the door to a new approach in lignin research, specifically for the identification of the components of the CS biosynthetic pathway that mediates the localized deposition of cell walls. I also made some efforts to understand the patterning and differentiation of endodermal passage cells in young roots. In the literature, passage cells are defined as a non- suberized xylem pole associated endodermal cells. Since these cells only contain the CS but not the suberin lamellae, it has been assumed that these cells may offer a continued low-resistance pathway for water and minerals into the stele. Thus far, no genes have been found to be expressed specifically in passage cells. In order to understand the patterning, differentiation, and physiological role of passage it would be crucial to identify some genes that are exclusively expressed in these cells. In order to identify such genes, I first generated fluorescent marker lines of stele-expressed transporters that have been reported to be expressed in the passage cells. My aim was to first highlight the passage cells in a non-specific way. In order to find passage cell specific genes I then adapted a two-component system based on previously published methods for gene expression profiling of individual cell types. This approach will allow us to target only the passage cells and then to study gene expression specifically in this cell type. Taken together, this preparatory work will provide an entry point to understand the formation and role of endodermal passage cells. - Chez les plantes vasculaires, la caractéristique la plus commune des cellules différentiées de l'endoderme est la présence de cadres de Caspary. Cette structure correspond à une imprégnation localisée des parties transversales et anticlinales de la paroi cellulaire. Cela donne naissance, autour de la cellule, à un anneau/cadre qui est coordonné par rapport aux cellules voisines. De manière analogue aux jonctions serrées des épithéliums chez les animaux, les cadres de Caspary agissent chez les plantes comme barrière de diffusion, contrôlant le mouvement de l'eau et des ions à travers la racine entre le sol et la stèle. Depuis leur première description par Robert Caspary en 1865, beaucoup de tentatives ont eu pour but de définir la nature chimique de ces cadres de Caspary. Après l'étude de différentes espèces végétales, à la fois la subérine, la lignine ou les deux ont été revendiquées comme étant des composants importants de ces cadres. Malgré tout, leur nature chimique exacte est restée longtemps énigmatique. Cette controverse provient de la confusion et du manque de connaissance concernant la détermination précise des trois stades de développement de l'endoderme. Les cadres de Caspary représentent uniquement le stade primaire de différentiation de l'endoderme. Celui-ci est suivi par le second stade de différentiation, la déposition de lamelles de subérine tout autour de la cellule endodermal. De ce fait, l'analyse chimique de racines entières ou de cellules d'endoderme isolées ne permet pas de séparer les stades de différentiation primaire et secondaire et aboutit donc à la présence des deux polymères. Il est également crucial de clarifier ce point dans le but de connaître quelle machinerie cellulaire localisée à la paroi cellulaire permet l'élaboration des cadres de Caspary. En utilisant les connaissances et les outils accumulés récemment grâce à la plante modèle Arabidopsis thaliana, divers techniques histologiques et chimiques ont été utilisées dans cette étude. Un point particulier de mon travail a été de dégrader ou d'inhiber complètement la formation de lignine ou de subérine en utilisant des approches de génétique classique ou moléculaire. Le but étant d'observer l'effet de l'absence d'un de ces deux polymères sur la formation des cadres de Caspary et l'établissement d'une barrière de diffusion fonctionnelle. De manière frappante, le fait d'interférer avec la voie de biosynthèse de monolignol (monomères de lignine) abolit la formation des cadres de Caspary et retarde l'élaboration d'une barrière de diffusion fonctionnelle. Par contre, des plantes transgéniques dépourvues d'une quantité détectable de subérine sont quant à elles toujours capables de développer des cadres de Caspary fonctionnels. Mises en commun, ces expériences démontrent que le polymère formant les cadres de Caspary dans la partie jeune de la racine est fait de monolignol, et que de ce fait il s'agit de lignine. La subérine, quant à elle, est formée bien plus tard durant le développement de l'endoderme, de plus il s'agit d'une modification de la paroi secondaire. Ces cadres de Caspary précoces faits de lignine suffisent donc à bloquer la diffusion extracellulaire, contrairement à la subérine. De plus, la machinerie de biosynthèse de la subérine n'est pas encore présente au moment de la formation des cadres de Caspary. Notre étude permet donc de mettre un terme au long débat concernant la nature chimique des cadres de Caspary. De plus, elle ouvre la porte à de nouvelles approches dans la recherche sur la lignine, plus particulièrement pour identifier des composants permettant la déposition localisée de ce polymère dans la paroi cellulaire. J'ai aussi fais des efforts pour mettre en évidence la formation ainsi que le rôle des cellules de passage dans les jeunes racines. Dans la littérature, les cellules de passage sont définies comme de la cellule endodermal faisant face aux pôles xylèmes et dont la paroi n'est pas subérisée. Du fait que ces cellules contiennent uniquement des cadres de Caspary et pas de lamelle de subérine, il a été supposé qu'elles ne devraient offrir que peu de résistance au passage de l'eau et des nutriments entre le sol et la stèle. Le rôle de ces cellules de passage est toujours loin d'être clair, de plus aucun gène s'exprimant spécifiquement dans ces cellules n'a été découvert à ce jour. De manière à identifier de tels gènes, j'ai tout d'abord généré des marqueurs fluorescents pour des transporteurs exprimés dans la stèle mais dont l'expression avait également été signalée dans l'endoderme, uniquement dans les cellules de passage. J'ai ensuite développé un système à deux composants basé sur des méthodes déjà publiées, visant principalement à étudier le profil d'expression génique dans un type cellulaire donné. En recoupant les gènes exprimés spécifiquement dans l'endoderme à ceux exprimés dans la stèle et les cellules de passage, il nous sera possible d'identifier le transriptome spécifique de ces cellules. Pris dans leur ensemble, ces résultats devraient donner un bon point d'entrée dans la définition et la compréhension des cellules de passage.
Resumo:
Functionally naive CD8 T cells in peripheral blood from adult humans can be fully described by their CD45RA(bright)CCR7(+)CD62L(+) cell surface phenotype. Cord blood lymphocytes, from healthy newborns, are homogenously functionally naive. Accordingly, the majority of cord blood CD8 T cells express the same pattern of cell surface molecules. Unexpectedly, however, a significant fraction of cord blood CD8 T cells express neither CCR7 nor CD62L. Yet these cells remain functionally naive as they contain high levels of TCR excision circles, have long telomeres, display highly polyclonal TCRs, and do not exhibit immediate effector functions. In addition, these CD8 T cells already represent a significant fraction of the mature naive CD8 single-positive thymocyte repertoire and may selectively express the cutaneous lymphocyte Ag. We suggest that CD8 single-positive thymocytes comprise two pools of naive precursors that exhibit distinct homing properties. Once seeded in the periphery, naive CCR7(+)CD62L(+) CD8 T cells patrol secondary lymphoid organs, whereas naive CCR7(-)CD62L(-) CD8 T cells selectively migrate to peripheral tissues such as skin.
Resumo:
Aspirin has always remained an enigmatic drug. Not only does it present with new benefits for treating an ever-expanding list of apparently unrelated diseases at an astounding rate but also because aspirin enhances our understanding of the nature of these diseases processe. Originally, the beneficial effects of aspirin were shown to stem from its inhibition of cyclooxygenase-derived prostaglandins, fatty acid metabolites that modulate host defense. However, in addition to inhibiting cyclooxygenase activity aspirin can also inhibit pro-inflammatory signaling pathways, gene expression and other factors distinct from eicosanoid biosynthesis that drive inflammation as well as enhance the synthesis of endogenous protective anti-inflammatory factors. Its true mechanism of action in anti-inflammation remains unclear. Here the data from a series of recent experiments proposing that one of aspirin's predominant roles in inflammation is the induction of nitric oxide, which potently inhibits leukocyte/endothelium interaction during acute inflammation, will be discussed. It will be argued that this nitric oxide-inducing effects are exclusive to aspirin due to its unique ability, among the family of traditional anti-inflammatory drugs, to acetylate the active site of inducible cyclooxygenase and generate a family of lipid mediators called the epi-lipoxins that are increasingly being shown to have profound roles in a range of host defense responses.
Resumo:
The infection mechanism of vaccinia virus is largely unknown. Neither the attachment protein of extracellular enveloped virus (EEV), the biologically relevant infectious form of the virus, nor its cellular receptor has been identified. Surprisingly, all former attempts using antibodies to block EEV infection of cells in vitro had failed. Here, we report the production of an anti-envelope hyperimmune serum with EEV neutralizing activity and show that a polyclonal antiserum against the extraviral domain of protein B5R also inhibited EEV infection. In vivo, mice vaccinated with B5R protein were protected against a lethal vaccinia virus challenge. This protectivity is likely to be mediated by neutralizing antibodies. Protein A33R, but not A34R and A36R, also proved to be protective in active and passive vaccination experiments. However, in contrast to B5R, A33R protectivity did not correlate with antibody titers. Because anti-A33R antibodies did not neutralize EEV in vitro, the protectivity mediated by A33R protein probably involves a mechanism different from simple antibody binding. Taken together, our results suggest that antibodies to a specific protective epitope or epitopes on protein B5R are able to prevent EEV infection. The protein encoded by the B5R gene is therefore likely to play a crucial role in the initial steps of vaccinia virus infection-binding to a host cell and entry into its cytoplasm.
Resumo:
Both the underlying molecular mechanisms and the kinetics of TCR repertoire selection following vaccination against tumor Ags in humans have remained largely unexplored. To gain insight into these questions, we performed a functional and structural longitudinal analysis of the TCR of circulating CD8(+) T cells specific for the HLA-A2-restricted immunodominant epitope from the melanocyte differentiation Ag Melan-A in a melanoma patient who developed a vigorous and sustained Ag-specific T cell response following vaccination with the corresponding synthetic peptide. We observed an increase in functional avidity of Ag recognition and in tumor reactivity in the postimmune Melan-A-specific populations as compared with the preimmune blood sample. Improved Ag recognition correlated with an increase in the t(1/2) of peptide/MHC interaction with the TCR as assessed by kinetic analysis of A2/Melan-A peptide multimer staining decay. Ex vivo analysis of the clonal composition of Melan-A-specific CD8(+) T cells at different time points during vaccination revealed that the response was the result of asynchronous expansion of several distinct T cell clones. Some of these T cell clones were also identified at a metastatic tumor site. Collectively, these data show that tumor peptide-driven immune stimulation leads to the selection of high-avidity T cell clones of increased tumor reactivity that independently evolve within oligoclonal populations.
Resumo:
In Xenopus laevis four estrogen-responsive genes are expressed simultaneously to produce vitellogenin, the precursor of the yolk proteins. One of these four genes, the gene A2, was sequenced completely, as well as cDNAs representing 75% of the coding region of the gene. From this data the exon-intron structure of the gene was established, revealing 35 exons that give a transcript of 5,619 bp without the poly A-tail. This A2 transcript encodes a vitellogenin of 1,807 amino acids, whose structure is discussed with respect to its function. At the nucleic acid as well as at the protein level no extensive homologies with any sequences other than vitellogenin were observed. Comparison of the amino acid sequence of the vitellogenin A2 molecule with biochemical data obtained from the different yolk proteins allowed us to localize the cleavage products on the vitellogenin precursor as follows: NH2 - lipovitellin I - phosvitin (or phosvette II - phosvette I) - lipovitellin II - COOH.