783 resultados para passerine birds, biodiversity, speciation
Resumo:
Mediterranean landscapes comprise a complex mosaic of different habitats that vary in the diversity of their floral communities, pollinator communities and pollination services. Using the Greek Island of Lesvos as a model system, we assess the biodiversity value of six common habitats and measure ecosystemic 'health' using pollen grain deposition in three core flowering plants as a measure of pollination services. Three fire-driven habitats were assessed: freshly burnt areas, fully regenerated pine forests and intermediate age scrub; in addition we examined oak woodlands, actively managed olive groves and groves that had been abandoned from agriculture. Oak woodlands, pine forests and managed olive groves had the highest diversity of bees. The habitat characteristics responsible for structuring bee communities were: floral diversity, floral abundance, nectar energy availability and the variety of nectar resources present. Pollination services in two of our plant species, which were pollinated by a limited sub-set of the pollinator community, indicated that pollination levels were highest in the burnt and mature pine habitats. The third species, which was open to all flower visitors, indicated that oak woodlands had the highest levels of pollination from generalist species. Pollination was always more effective in managed olive groves than in abandoned groves. However, the two most common species of bee, the honeybee and a bumblebee, were not the primary pollinators within these habitats. We conclude that the three habitats of greatest overall value for plant-pollinator communities and provision of the healthiest pollination services are pine forests, oak woodland and managed olive groves. We indicate how the highest value habitats may be maintained in a complex landscape to safeguard and enhance pollination function within these habitats and potentially in adjoining agricultural areas. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Increased agricultural intensification has led to well-documented declines in the fauna and flora associated with intensive grasslands in the UK. We aimed to quantify the effectiveness of different field margin management strategies for putting bumblebee and butterfly biodiversity back into intensive grasslands. Using four intensive livestock farms in south-west England, we manipulated conventional management practices (addition of inorganic fertilizer, cutting frequency and height, and aftermath grazing) to generate seven grass-based treatments along a gradient of decreasing management intensity. We also tested two more interventionist treatments which introduced sown components into the sward: (i) a cereal, grass and legume mix, and (ii) a diverse conservation mix with kale, mixed cereals, linseed and legumes. These crop mixtures were intended to provide forage and structural resources for pollinators but were not intended to have agronomic value as livestock feed. Using a replicated block design, we monitored bumblebee and butterfly responses in 27 plots (10 x 50 m) in each farm from 2003 to 2006. Bumblebees were most abundant, species-rich and diverse in the sown treatments and virtually absent from the grass-based treatments. The diverse conservation mix treatment supported larger and more diverse bumblebee assemblages than the cereal, grass and legume mix treatment. The sown treatments, and the most extensively managed grass-based treatments, had the highest abundance, species richness and diversity of adult butterflies, whereas butterfly larvae were only found in the grass-based treatments. Bumblebee and butterfly assemblage structure was driven by floral abundance, floral richness, the availability of nectar resources, and sward structure. Only vegetation cover was correlated with butterfly larval abundance. Synthesis and applications. This study has identified management options in the margins of intensive grasslands which can enhance bumblebee and butterfly biodiversity. Extensification of conventional grass management by stopping fertilization, reducing cutting frequency and not grazing, benefits butterflies. However, to enhance bumblebees requires a more interventionist approach in the form of sowing flower-rich habitat. Both approaches are potentially suitable for adoption in agri-environment schemes in the UK and Europe.
Resumo:
The EU-funded research project ALARM will develop and test methods and protocols for the assessment of large-scale environmental risks in order to minimise negative human impacts. Research focuses on the assessment and forecast of changes in biodiversity and in the structure, function, and dynamics of ecosystems. This includes the relationships between society, the economy and biodiversity.
Resumo:
1. Many farmland bird species have undergone significant declines. It is important to predict the effect of agricultural change on these birds and their response to conservation measures. This requirement could be met by mechanistic models that predict population size from the optimal foraging behaviour and fates of individuals within populations. A key component of these models is the functional response, the relationship between food and competitor density and feeding rate. 2. This paper describes a method for measuring functional responses of farmland birds, and applies this method to a declining farmland bird, the corn bunting Miliaria calandra L. We derive five alternative models to predict the functional responses of farmland birds and parameterize these for corn bunting. We also assess the minimum sample sizes required to predict accurately the functional response. 3. We show that the functional response of corn bunting can be predicted accurately from a few behavioural parameters (searching rate, handling time, vigilance time) that are straightforward to measure in the field. These parameters can be measured more quickly than the alternative of measuring the functional response directly. 4. While corn bunting violated some of the assumptions of Holling's disk equation (model 1 in our study), it still provided the most accurate fit to the observed feeding rates while remaining the most statistically simple model tested. Our other models may be more applicable to other species, or corn bunting feeding in other locations. 5. Although further tests are required, our study shows how functional responses can be predicted, simplifying the development of mechanistic models of farmland bird populations.
Resumo:
The presence of a grass strip was found to be beneficial to soil macrofauna, increasing the species densities and abundances of earthworms, woodlice and staphylinid beetles. The biodiversity of the three main feeding groups - predators, soil ingesters and litter consumers - was also significantly higher in the grass strips than in the field edges without strips, indicating that establishment of grassy margins in arable fields may enhance ecosystem services such as soil fertility and pest control. The grass strip habitat contained a large number of species of soil macrofauna, being second only to hedgerow habitat, with 10% of the total species list for the farm found only within the margins. Of the rare species recorded on the farm, five of the nine were from the grass strips, four of which were found only there. This study shows that establishing grassy strips in the margins of arable fields increases the biodiversity of the soil macrofauna, both within fields (alpha diversity) and across the farm (beta diversity). (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The presence of a grass strip was found to be beneficial to soil macrofauna, increasing the species densities and abundances of earthworms, woodlice and staphylinid beetles. The biodiversity of the three main feeding groups – predators, soil ingesters and litter consumers – was also significantly higher in the grass strips than in the field edges without strips, indicating that establishment of grassy margins in arable fields may enhance ecosystem services such as soil fertility and pest control. The grass strip habitat contained a large number of species of soil macrofauna, being second only to hedgerow habitat, with 10% of the total species list for the farm found only within the margins. Of the rare species recorded on the farm, five of the nine were from the grass strips, four of which were found only there. This study shows that establishing grassy strips in the margins of arable fields increases the biodiversity of the soil macrofauna, both within fields (alpha diversity) and across the farm (beta diversity).
Resumo:
Buffer strips are refuges for a variety of plants providing resources, such as pollen, nectar and seeds, for higher trophic levels, including invertebrates, mammals and birds. Margins can also harbour plant species that are potentially injurious to the adjacent arable crop (undesirable species). Sowing perennial species in non-cropped buffer strips can reduce weed incidence, but limits the abundance of annuals with the potential to support wider biodiversity (desirable species). We investigated the responses of unsown plant species present in buffer strips established with three different seed mixes managed annually with three contrasting management regimes (cutting, sward scarification and selective graminicide). Sward scarification had the strongest influence on the unsown desirable (e.g. Sonchus spp.) and unsown pernicious (e.g. Elytrigia repens) species, and was generally associated with higher cover values of these species. However, abundances of several desirable weed species, in particular Poa annua, were not promoted by scarification. The treatments of cutting and graminicide tended to have negative impacts on the unsown species, except for Cirsium vulgare, which increased with graminicide application. Differences in unsown species cover between seed mixes were minimal, although the grass-only mix was more susceptible to establishment by C. vulgare and Galium aparine than the two grass and forb mixes. Annual scarification can enable desirable annuals and sown perennials to co-exist, however, this practice can also promote pernicious species, and so is unlikely to be widely adopted as a management tool in its current form.
Resumo:
Passerines are especially vulnerable to predation at the pre-independence stage. Although the role of nest success in British farmland passerine declines is contentious, improvement in nest success through sympathetic management could play a role in their reversal. Because habitat is known to interact with predation, management options for mitigation will need to consider effects of nest predation. We present results from an observational study of a population of Common Blackbird Turdus merula on a farm which has experienced a range of agri-environment and game-management options, including a period with nest predator control, as a case study to address some of these issues. We used an information theoretic model comparison procedure to look for evidence of interactions between habitat and nest predation, and then asked whether habitat management and nest predator abundances could explain population trends at the site through their effects on nest success. Interactions were detected between measures of predator abundance and habitat variables, and these varied with nest stage - habitat within the vicinity of the nest appeared to be important at the egg stage, and nest-placement characteristics were important at the nestling stage. Although predator control appeared to have a positive influence on Blackbird breeding population size, the non-experimental set-up meant we could not eliminate other potential explanations. Variation in breeding population size did not appear to be influenced by variation in nest success alone. Our study demonstrates that observational data can only go so far in detection of such effects, and we discuss how it might be taken further. Agri-environment and game-management techniques are likely to influence nest predation pressure on farmland passerines, but the patterns, mechanisms and importance to population processes remain not wholly understood.
Resumo:
The silvicultural management of Scottish birch woodlands for timber production is replacing traditional low intensity management practices, such as domesticated livestock grazing. These new management practices involve thinning of existing woodlands to prescribed densities to maximize biomass and timber quality. Although presently infrequent, the wide scale adoption of this practice could affect invertebrate community diversity. The impact of these changes in management on Staphylinidae and Carabidae (Coleoptera) in 19 woodlands in Aberdeenshire, north-east Scotland was investigated. Grazing and logging practices were important determinants of beetle community structure. Woodland area had no effect on any measure of beetle community structure, although isolation did influence the abundance of one carabid species. Changes towards timber production forestry will influence the structure of invertebrate communities, although the scale at which this occurs will determine its effect.
Resumo:
P>1. Management of lowland mesotrophic grasslands in north-west Europe often makes use of inorganic fertilizers, high stocking densities and silage-based forage systems to maximize productivity. The impact of these practices has resulted in a simplification of the plant community combined with wide-scale declines in the species richness of grassland invertebrates. We aim to identify how field margin management can be used to promote invertebrate diversity across a suite of functionally diverse taxa (beetles, planthoppers, true bugs, butterflies, bumblebees and spiders). 2. Using an information theoretic approach we identify the impacts of management (cattle grazing, cutting and inorganic fertilizer) and plant community composition (forb species richness, grass species richness and sward architecture) on invertebrate species richness and body size. As many of these management practices are common to grassland systems throughout the world, understanding invertebrate responses to them is important for the maintenance of biodiversity. 3. Sward architecture was identified as the primary factor promoting increased species richness of both predatory and phytophagous trophic levels, as well as being positively correlated with mean body size. In all cases phytophagous invertebrate species richness was positively correlated with measures of plant species richness. 4. The direct effects of management practices appear to be comparatively weak, suggesting that their impacts are indirect and mediated though the continuous measures of plant community structure, such as sward architecture or plant species richness. 5. Synthesis and applications. By partitioning field margins from the remainder of the field, economically viable intensive grassland management can be combined with extensive management aimed at promoting native biodiversity. The absence of inorganic fertilizer, combined with a reduction in the intensity of both cutting and grazing regimes, promotes floral species richness and sward architectural complexity. By increasing sward architecture the total biomass of invertebrates also increased (by c. 60% across the range of sward architectural measures seen in this study), increasing food available for higher trophic levels, such as birds and mammals.
Resumo:
Aim The Mediterranean region is a species-rich area with a complex geographical history. Geographical barriers have been removed and restored due to sea level changes and local climatic change. Such barriers have been proposed as a plausible mechanism driving the high levels of speciation and endemism in the Mediterranean basin. This raises the fundamental question: is allopatric isolation the mechanism by which speciation occurs? This study explores the potential driving influence of palaeo-geographical events on the speciation of Cyclamen (Myrsinaceae), a group with most species endemic to the Mediterranean region. Cyclamen species have been shown experimentally to have few genetic barriers to hybridization. Location The Mediterranean region, including northern Africa, extending eastwards to the Black Sea coast. Methods A generic level molecular phylogeny of Myrsinaceae and Primulaceae is constructed, using Bayesian approximation, to produce a secondary age estimate for the stem lineage of Cyclamen. This estimate is used to calibrate temporally an infrageneric phylogeny of Cyclamen, built with nrDNA ITS, cpDNA trnL-F and cpDNA rps16 sequences. A biogeographical analysis of Cyclamen is performed using dispersal-vicariance analysis. Results The emergence of the Cyclamen stem lineage is estimated at 30.1-29.2 Ma, and the crown divergence at 12.9-12.2 Ma. The average age of Cyclamen species is 3.7 Myr. Every pair of sister species have mutually exclusive, allopatric distributions relative to each other. This pattern appears typical of divergence events throughout the evolutionary history of the genus. Main conclusions Geographical barriers, such as the varying levels of the Mediterranean Sea, are the most plausible explanation for speciation events throughout the phylogenetic history of Cyclamen. The genus demonstrates distributional patterns congruent with the temporally reticulate palaeogeography of the Mediterranean region.