972 resultados para pan-Antarctica


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The foraging distributions of 20 breeding emperor penguins were investigated at Pointe Géologie, Terre Adélie, Antarctica by using satellite telemetry in 2005 and 2006 during early and late winter, as well as during late spring and summer, corresponding to incubation, early chick-brooding, late chick-rearing and the adult pre-moult period, respectively. Dive depth records of three post-egg-laying females, two post-incubating males and four late chick-rearing adults were examined, as well as the horizontal space use by these birds. Foraging ranges of chick-provisioning penguins extended over the Antarctic shelf and were constricted by winter pack-ice. During spring ice break-up, the foraging ranges rarely exceeded the shelf slope, although seawater access was apparently almost unlimited. Winter females appeared constrained in their access to open water but used fissures in the sea ice and expanded their prey search effort by expanding the horizontal search component underwater. Birds in spring however, showed higher area-restricted-search than did birds in winter. Despite different seasonal foraging strategies, chick-rearing penguins exploited similar areas as indicated by both a high 'Area-Restricted-Search Index' and high 'Catch Per Unit Effort'. During pre-moult trips, emperor penguins ranged much farther offshore than breeding birds, which argues for particularly profitable oceanic feeding areas which can be exploited when the time constraints imposed by having to return to a central place to provision the chick no longer apply.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work has been carried out as part of "Programma Nazionale di Ricerche in Antartide" and was supported financially be ENEA through a joint reasearch-program on Antarctic Earth Science with the University of Siena (Italy). The geopmorphological and glaciological research, of which this work forms a part, is coordinated by Prof. Giuseppe Grombelli.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Topographic data of this geological map were obtained through stereoscopic aerial photo interpretation. The photogrammetric photo flights were undertaken in 1986 by the Institut für Angewandte Geodäsie, Frankfurt. Horizontal ground control points required for aerial photo interpretation were determined by means of Doppler satellite observation during the 2nd German Neuschwabenland Expedition 1985/86. Vertical ground control points were taken from unpublished map drafts at 1:100 000 scale by Norsk Polarinstitutt, Oslo. The elevation above mean sea level was transferred to Heimefrontfjella barometrically. For this reason assertions concerning the absolute elevation (referred to sea level) are uncertain. Contours and spot heights presented on the map were obtained from the photogrammetric evaluation of the photography taken in 1986; relative elevation data (hight differences) are accurate to approximately ±10 m.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study subdivides the Potter Cove, King George Island, Antarctica, into seafloor regions using multivariate statistical methods. These regions are categories used for comparing, contrasting and quantifying biogeochemical processes and biodiversity between ocean regions geographically but also regions under development within the scope of global change. The division obtained is characterized by the dominating components and interpreted in terms of ruling environmental conditions. The analysis includes in total 42 different environmental variables, interpolated based on samples taken during Australian summer seasons 2010/2011 and 2011/2012. The statistical errors of several interpolation methods (e.g. IDW, Indicator, Ordinary and Co-Kriging) with changing settings have been compared and the most reasonable method has been applied. The multivariate mathematical procedures used are regionalized classification via k means cluster analysis, canonical-correlation analysis and multidimensional scaling. Canonical-correlation analysis identifies the influencing factors in the different parts of the cove. Several methods for the identification of the optimum number of clusters have been tested and 4, 7, 10 as well as 12 were identified as reasonable numbers for clustering the Potter Cove. Especially the results of 10 and 12 clusters identify marine-influenced regions which can be clearly separated from those determined by the geological catchment area and the ones dominated by river discharge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study we report on new non-sea salt calcium (nssCa2+, mineral dust proxy) and sea salt sodium (ssNa+, sea ice proxy) records along the East Antarctic Talos Dome deep ice core in centennial resolution reaching back 150 thousand years (ka) before present. During glacial conditions nssCa2+ fluxes in Talos Dome are strongly related to temperature as has been observed before in other deep Antarctic ice core records, and has been associated with synchronous changes in the main source region (southern South America) during climate variations in the last glacial. However, during warmer climate conditions Talos Dome mineral dust input is clearly elevated compared to other records mainly due to the contribution of additional local dust sources in the Ross Sea area. Based on a simple transport model, we compare nssCa2+ fluxes of different East Antarctic ice cores. From this multi-site comparison we conclude that changes in transport efficiency or atmospheric lifetime of dust particles do have a minor effect compared to source strength changes on the large-scale concentration changes observed in Antarctic ice cores during climate variations of the past 150 ka. Our transport model applied on ice core data is further validated by climate model data. The availability of multiple East Antarctic nssCa2+ records also allows for a revision of a former estimate on the atmospheric CO2 sensitivity to reduced dust induced iron fertilisation in the Southern Ocean during the transition from the Last Glacial Maximum to the Holocene (T1). While a former estimate based on the EPICA Dome C (EDC) record only suggested 20 ppm, we find that reduced dust induced iron fertilisation in the Southern Ocean may be responsible for up to 40 ppm of the total atmospheric CO2 increase during T1. During the last interglacial, ssNa+ levels of EDC and EPICA Dronning Maud Land (EDML) are only half of the Holocene levels, in line with higher temperatures during that period, indicating much reduced sea ice extent in the Atlantic as well as the Indian Ocean sector of the Southern Ocean. In contrast, Holocene ssNa+ flux in Talos Dome is about the same as during the last interglacial, indicating that there was similar ice cover present in the Ross Sea area during MIS 5.5 as during the Holocene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ENVISAT ASAR WSM images with pixel size 150 × 150 m, acquired in different meteorological, oceanographic and sea ice conditions were used to determined icebergs in the Amundsen Sea (Antarctica). An object-based method for automatic iceberg detection from SAR data has been developed and applied. The object identification is based on spectral and spatial parameters on 5 scale levels, and was verified with manual classification in four polygon areas, chosen to represent varying environmental conditions. The algorithm works comparatively well in freezing temperatures and strong wind conditions, prevailing in the Amundsen Sea during the year. The detection rate was 96% which corresponds to 94% of the area (counting icebergs larger than 0.03 km**2), for all seasons. The presented algorithm tends to generate errors in the form of false alarms, mainly caused by the presence of ice floes, rather than misses. This affects the reliability since false alarms were manually corrected post analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By incorporating recently available remote sensing data, we investigated the mass balance for all individual tributary glacial basins of the Lambert Glacier-Amery Ice Shelf system, East Antarctica. On the basis of the ice flow information derived from SAR interferometry and ICESat laser altimetry, we have determined the spatial configuration of eight tributary drainage basins of the Lambert-Amery glacial system. By combining the coherence information from SAR interferometry and the texture information from SAR and MODIS images, we have interpreted and refined the grounding line position. We calculated ice volume flux of each tributary glacial basin based on the ice velocity field derived from Radarsat three-pass interferometry together with ice thickness data interpolated from Australian and Russian airborne radio echo sounding (RES) surveys and inferred from ICESat laser altimetry data. Our analysis reveals that three tributary basins have a significant net positive imbalance, while five other subbasins are slightly positive or close to zero balance. Overall, in contrast to previous studies, we find that the grounded ice in Lambert Glacier-Amery Ice Shelf system has a positive mass imbalance of 22.9 ± 4.4 Gt/a. The net basal melting for the entire Amery Ice Shelf is estimated to be 27.0 ± 7.0 Gt/a. The melting rate decreases rapidly from the grounding zone to the ice shelf front. Significant basal refreezing is detected in the downstream section of the ice shelf. The mass balance estimates for both the grounded ice sheet and the ice shelf mass differ substantially from other recent estimates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Miocene deep-sea sediments from ODP Site 744 (Kerguelen Plateau, southern Indian Ocean) contain abundant and diverse planktonic foraminiferal assemblages. Their analysis led to the identification of the interval between 17.0 and 14.2 Ma as a time of mid-Miocene warmth, which is investigated here in detail. This investigation includes reconstruction of trends in foraminiferal faunal composition and diversity through time, as well as in morphology and coiling direction within Globorotalia praescitula and Globorotalia zealandica plexi. These two large-globorotaliid plexi constitute the most characteristic component of the mid-Miocene foraminiferal faunas at ODP Site 744. Selected benthic (Cibicidoides sp.) and planktonic foraminifera were also analyzed for delta18O and delta13C ratios. Distinctive planktonic assemblages were the basis for identification of three foraminiferal biofacies between 17.0 and 14.2 Ma. The most prominent faunal changes took place between Biofacies 2 and 3 (15.5-15.0 Ma). Six of 11 macroperforate planktonic foraminifera from the >150-µm size fraction occur principally within Biofacies 3. Three other taxa are present throughout the interval analyzed. Moreover, both aforementioned globorotaliid plexi exhibit an increase in morphological diversity between Biofacies 2 and 3. Within the same interval, the G. zealandica plexus shows a switch from random coiling (50% sinistral) to clearly sinistral-dominated coiling. The faunal changes recognized are interpreted as the result of foraminiferal immigrations (increase in faunal diversity) and evolutionary trends (increase in morphological variability and change in coiling mode among the globorotaliid plexi). The stable isotopic results allow paleoenvironmental interpretation of these faunal changes. According to the delta18O values, no significant change in sea-surface temperature occurred between 17.0 and 14.2 Ma. However, the same data suggest an increase in ecological distance between various niches, which is expressed by a rising delta18O gradient recorded between various planktonic taxa upward within the section. This trend suggests niche-space availability as a likely factor responsible for the faunal changes recognized. Changes in the shape and depth of the thermocline, as well as in seasonality and eutrophication are considered as possible causes. Among these an increase in seasonality appears to have been responsible for the increase in species and morphological diversities between 15.5 and 15.0 Ma. The proposed scenario suggests that changes in seasonality may be an important factor driving faunal migrations and evolution. Variable seasonality may also affect the oxygen isotopic record of planktonic foraminiferal taxa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fresh deposits above the margins of Reedy Glacier show that maximum ice levels during the last glaciation were several hundred meters above present near the glacier mouth and converged to less than 60 m above the present-day surface at the head of the glacier. Exposure ages of samples from five sites along its margin show that Reedy Glacier and its tributaries thickened asynchronously between 17 and 7 kyr BP At the Quartz Hills, located midway along the glacier, maximum ice levels were reached during the period 17-14 kyr BP. Farther up-glacier the ice surface reached its maximum elevation more recently: 14.7-10.2 kyr BP at the Caloplaca Hills; 9.1-7.7 kyr BP at Mims Spur; and around 7 kyr BP at Hatcher Bluffs. We attribute this time-transgressive behavior to two different processes: At the glacier mouth, growth of grounded ice and subsequent deglaciation in the Ross Sea embayment caused a wave of thickening and then thinning to propagate up-glacier. During the Lateglacial and Holocene, increased snow accumulation on the East Antarctic Ice Sheet caused transient thickening at the head of the glacier. An important result of this work is that moraines deposited along Reedy Glacier during the last ice age cannot be correlated to reconstruct a single glacial maximum longitudinal profile. The profile steepened during deglaciation of the Ross Sea, thinning at the Quartz Hills after 13 kyr BP while thickening upstream. Near its confluence with Mercer Ice Stream, rapid thinning beginning prior to 7-8 kyr BP reduced the level of Reedy Glacier to close to its present level. Thinning over the past 1000 years has lowered the glacier by less than 20 m.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Iceberg calving has been assumed to be the dominant cause of mass loss for the Antarctic ice sheet, with previous estimates of the calving flux exceeding 2,000 gigatonnes per year. More recently, the importance of melting by the ocean has been demonstrated close to the grounding line and near the calving front. So far, however, no study has reliably quantified the calving flux and the basal mass balance (the balance between accretion and ablation at the ice-sheet base) for the whole of Antarctica. The distribution of fresh water in the Southern Ocean and its partitioning between the liquid and solid phases is therefore poorly constrained. Here we estimate the mass balance components for all ice shelves in Antarctica, using satellite measurements of calving flux and grounding-line flux, modelled ice-shelf snow accumulation rates and a regional scaling that accounts for unsurveyed areas. We obtain a total calving flux of 1,321 ± 144 gigatonnes per year and a total basal mass balance of -1,454 ± 174 gigatonnes per year. This means that about half of the ice-sheet surface mass gain is lost through oceanic erosion before reaching the ice front, and the calving flux is about 34 per cent less than previous estimates derived from iceberg tracking. In addition, the fraction of mass loss due to basal processes varies from about 10 to 90 per cent between ice shelves. We find a significant positive correlation between basal mass loss and surface elevation change for ice shelves experiencing surface lowering and enhanced discharge. We suggest that basal mass loss is a valuable metric for predicting future ice-shelf vulnerability to oceanic forcing.