913 resultados para orders of worth


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Foraminifera were examined in recent (<100 years) fine-grained glaciomarine muds from surface sediments and cores from Nordensheld Bay, Novaja Zemlja, and Hornsund and Bellsund, Spitsbergen. This study presents the first data on modern foraminifera distribution for fjord environments in Novaja Zemlja, Russia. The data are interpreted with reference to the distribution of foraminiferal near Svalbard and the Barents Sea. In Nordensheld Bay, live and dead Nonionellina labradorica and Islandiella norcrossi are most abundant in the outer fjord. Cassidulina reniforme and Allogromiina spp. dominate in the middle and inner fjord. The dominant species are dissimilar to species occurring in other areas of the Barents Sea region, with the exception of Svalbard fjords. The number of live foraminifera (24 to 122 tests/10 cm1) in outer and middle Nordensheld Bay corresponds with values known from the open Barents Sea. However, the biomass (0.03 mg/10 cm**3) is two orders of magnitude less due to smaller foraminiferal test size, which in glaciomarine sediments reflects the absence of larger species, paucity of large specimens, and high occurrence of juvenile foraminifera. The smaller size indicates an opportunistic response to environmental stress due to glacier proximity. The presence of Quinqueloculina stalkeri is diagnostic of glaciomarine environments in fjords of Novaja Zemlja and Svalbard.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Chert and associated host sediments from Monterey Formation and Deep Sea Drilling Project (DSDP) sequences were analyzed in order to assess chemical behavior during diagenesis of biogenic sediments. The primary compositional contrast between chert and host sediment is a greater absolute SiO2 concentration in chert, often with final SiO2 >=98 wt%. This contrast in SiO2 (and Si/Al) potentially reflects precursor sediment heterogeneity, diagenetic chemical fractionation, or both. SiO2 concentrations and Si/Al ratios in chert are far greater than in modern siliceous oozes, however and often exceed values in acid-cleaned diatom tests. Compositional contrasts between chert and host sediment are also orders-of-magnitude greater than between multiple samples of the host sediment. Calculations based on the initial composition of adjacent host, observed porosity reductions from host to chert and a postulated influx of pure SiO2, construct a chert composition which is essentially identical to observed SiO2 values in chert. Thus, precursor heterogeneity does not seem to be the dominant factor influencing the current chert composition for the key elements of interest. In order to assess the extent of chemical fractionation during diagenesis, we approximate the precursor composition by analyzing host sediments adjacent to the chert. The SiO2 concentration contrast seems caused by biogenic SiO2 dissolution and transport from the local adjacent host sediment and subsequent SiO2 reprecipitation in the chert. Along with SiO2, other elements are often added (with respect to Al) to Monterey and DSDP chert during silicification, although absolute concentrations decrease. The two Monterey quartz chert nodules investigated, in contrast to the opal-CT and quartz chert lenses, formed primarily by extreme removal of carbonate and phosphate, thereby increasing relative SiO2 concentrations. DSDP chert formed by both carbonate/phosphate dissolution and SiO2 addition from the host. Manganese is fractionated during chert formation, resulting in MnO/Al2O3 ratios that no longer record the depositional signal of the precursor sediment. REE data indicate only subtle diagenetic fractionation across the rare earth series. Ce/Ce* values do not change significantly during diagenesis of either Monterey or DSDP chert. Eu/Eu* decreases slightly during formation of DSDP chert. Normative La/Yb is affected only minimally as well. During formation of one Monterey opal-CT chert lens, REE/Al ratios show subtle distribution changes at Gd and to a lesser extent near Nd and Ho. REE compositional contrasts between diagenetic states of siliceous sediment and chert are of a vastly smaller scale than has been noted between different depositional environments of marine sediment, indicating that the paleoenvironmental REE signature is not obscured by diagenetic overprinting.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Serpentinite seamounts in the Mariana forearc have been explained as diapirs rising from the Benioff zone. This hypothesis predicts that the serpentinites should have low strengths as well as low densities relative to the surrounding rocks. Drilling during Leg 125 showed that the materials forming Conical Seamount in the Mariana forearc and Torishima Forearc Seamount in the Izu-Bonin forearc are water-charged serpentinite muds of density <2 g/cm**3. Wykeham-Farrance torsion-vane tests showed that they are plastic solids with a rheology that bears many similarities to the idealized Cam clay soil model and is well described by critical-state soil mechanics. The serpentinite muds have ultimate strengths of 1.3 to 273.7 kPa and yield strengths of approximately 1.0 to 50 kPa. These muds thus are orders of magnitude weaker than salt and are, in fact, comparable in density and strength to common deep-sea clay muds. Such weak and low-density materials easily become diapiric. Serpentinite muds from the summit of Conical Seamount are weaker and more ductile than those on its flanks or on Torishima Forearc Seamount. Moreover, the summit muds do not contain the pronounced pure- and simple-shear fabrics that characterize those on the seamount flanks. The seamounts are morphologically similar to shield volcanoes, and anastomosing serpentinite debris flows descending from their summits are similar in map view to pahoehoe flows. These morphologic features, together with the physical properties of the muds and their similarities to other oceanic muds and the geochemistry of the entrained waters, suggest that many forearc serpentinite seamounts are gigantic (10-20 km wide, 1.5-2.0 km high) mud volcanoes that formed by the eruption of highly liquid serpentinite muds. Torishima Forearc Seamount, which is blanketed by more ìnormalî pelagic/volcaniclastic sediment, has probably been inactive since the Miocene. Conical Seamount, which seems to consist entirely of serpentinite mud and is venting fresh water of unusual chemistry from its summit, is presently active. Muds from the flanks of Conical Seamount are stronger and more brittle than those from the summit site, and muds from Torishima Forearc Seamount are stronger yet; this suggests that the serpentinite debris flows are compacted and dewatered as they mature. The shear fabrics probably result from downslope creep and flow, but may also be inherited.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Metamodels have proven be very useful when it comes to reducing the computational requirements of Evolutionary Algorithm-based optimization by acting as quick-solving surrogates for slow-solving fitness functions. The relationship between metamodel scope and objective function varies between applications, that is, in some cases the metamodel acts as a surrogate for the whole fitness function, whereas in other cases it replaces only a component of the fitness function. This paper presents a formalized qualitative process to evaluate a fitness function to determine the most suitable metamodel scope so as to increase the likelihood of calibrating a high-fidelity metamodel and hence obtain good optimization results in a reasonable amount of time. The process is applied to the risk-based optimization of water distribution systems; a very computationally-intensive problem for real-world systems. The process is validated with a simple case study (modified New York Tunnels) and the power of metamodelling is demonstrated on a real-world case study (Pacific City) with a computational speed-up of several orders of magnitude.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Little is known about the benthic communities of the Arctic Ocean's slope and abyssal plains. Here we report on benthic data collected from box cores along a transect from Alaska to the Barents Abyssal Plain during the Arctic Ocean Section of 1994. We determined: (1) density and biomass of the polychaetes, foraminifera and total infauna; (2) concentrations of potential sources of food (pigment concentration and percent organic carbon) in the sediments; (3) surficial particle mixing depths and rates using downcore 210Pb profiles; and (4) surficial porewater irrigation using NaBr as an inert tracer. Metazoan density and biomass vary by almost three orders of magnitude from the shelf to the deep basins (e.g. 47 403 individuals m**-2 on the Chukchi Shelf to 95 individuals m**-2 in the Barents Abyssal Plain). Water depth is the primary determinant of infaunal density, explaining 39% of the total variability. Potential food concentration varies by almost two orders of magnitude during the late summer season (e.g. the phaeopigment concentration integrated to 10 cm varies from 36.16 mg m**-2 on the Chukchi Shelf to 0.94 mg m**-2 in the Siberia Abyssal Plain) but is not significantly correlated with density or biomass of the metazoa. Most stations show evidence of particle mixing, with mixing limited to <=3 cm below the sediment-water interface, and enhanced pore water irrigation occurs at seven of the nine stations examined. Particle mixing depths may be related to metazoan biomass, while enhanced pore water irrigation (beyond what is expected from diffusion alone) appears to be related to total phaeopigment concentration. The data presented here indicate that Arctic benthic ecosystems are quite variable, but all stations sampled contained infauna and most stations had indications of active processing of the sediment by the associated infauna.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dissolved organic carbon (DOC) was determined in pore water extracted from pelagic and hemipelagic sediments recovered during Leg 113. DOC concentration varied between 1.82 and 13.6 mg C/L which is one to two orders of magnitude less than previously reported for hemipelagic sediments. It is argued that this difference is related to differences in the intensity of degradation of organic matter. As a first approximation it is found that in reducing sediments, the level of DOC is proportional to the intensity of sulfate reduction. It is suggested that DOC is formed by different mechanisms in oxic and reducing environments.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A manganese oxide crust from an extensive deposit in the median valley of the Mid-Atlantic Ridge was found to be unusually high in manganese (up to 39.4% Mn), low in Fe (as low as 0.01% Fe), low in trace metals and deficient in Th230 and Pa231 with respect to the parent uranium isotopes in the sample. The accumulation rate is 100 mm to 200 mm/10 million year, or 2 orders of magnitude faster than the typical rate for deep-sea ferromanganese deposits. The rapid growth rate and unusual chemistry are consistent with a hydrothermal origin or with a diagenetic origin by manganese remobilized from reduced sediments. Because of the association with an active ridge, geophysical evidence indicative of hydrothermal activity, and a scarcity of sediment in the sampling area, we suggest that a submarine hot spring has created the deposit.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have studied the magnetic properties of 22 samples from DSDP Leg 83 to determine the origin of remanence and its relationship to such problems as the tectonic and chemical evolution of the section, the depth of the magnetized layer, and the applicability of magnetic properties of ophiolites to the marine crust. The magnitude of natural remanence has fairly typical values in the uppermost part of the section, falls two to three orders of magnitude in the transition zone, and returns to values slightly less than the upper part in the dike complex. This behavior reflects, for the most part, variations in the amount of magnetic minerals present. Directional behavior is highly variable throughout the section and often shows complexity even on the level of a single sample. Curie temperature measurements and preliminary opaque petrography indicate that the remanence is chemical in origin and probably involves a resetting of the original thermal remanent magnetization (TRM) direction. Selective destructive demagnetization of four breccia samples shows that the remanence of the clasts was acquired prior to consolidation and did not change significantly thereafter. There are also indications that some of the remanence may be carried by secondary magnetic phases. A comparison of these samples with comparable ophiolite rocks is equivocal, with similarities in remanence characteristics but differences in magnetic mineralogy. As for magnetic anomalies, the transition zone is too weakly magnetized to contribute significantly. The available data on the dike complex are inconclusive and their contribution is still open to debate.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The solution rate of biogenic opal in near-surface sediments in the Central Equatorial Pacific is three to eight orders of magnitude lower than similar acid-cleaned samples. Iron, magnesium and calcium aluminosilicates may be the minerals which are forming on the surface of the opal and reducing its solution rate. The scale height of the system studied suggests that diffusive and not advective processes are primarily responsible for the removal of dissolved silica in sediments. Solution budget calculations for this area suggest that 90-99 per cent of the biogenic opal produced in surface waters dissolves before reaching the sediment-water interface; an additional amount dissolves within the sediment and diffuses into bottom waters leaving 0.05-0.15 per cent of the original amount of opal produced by organisms in the sedimentary record. The relative solution potential of the upper 1000 m of the water column varies by more than an order of magnitude from the Antarctic to Equator and may have a pronounced effect on the accumulation rate of biogenic opal in underlying sediments.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present a novel graphical user interface program GrafLab (GRAvity Field LABoratory) for spherical harmonic synthesis (SHS) created in MATLAB®. This program allows to comfortably compute 38 various functionals of the geopotential up to ultra-high degrees and orders of spherical harmonic expansion. For the most difficult part of the SHS, namely the evaluation of the fully normalized associated Legendre functions (fnALFs), we used three different approaches according to required maximum degree: (i) the standard forward column method (up to maximum degree 1800, in some cases up to degree 2190); (ii) the modified forward column method combined with Horner's scheme (up to maximum degree 2700); (iii) the extended-range arithmetic (up to an arbitrary maximum degree). For the maximum degree 2190, the SHS with fnALFs evaluated using the extended-range arithmetic approach takes only approximately 2-3 times longer than its standard arithmetic counterpart, i.e. the standard forward column method. In the GrafLab, the functionals of the geopotential can be evaluated on a regular grid or point-wise, while the input coordinates can either be read from a data file or entered manually. For the computation on a regular grid we decided to apply the lumped coefficients approach due to significant time-efficiency of this method. Furthermore, if a full variance-covariance matrix of spherical harmonic coefficients is available, it is possible to compute the commission errors of the functionals. When computing on a regular grid, the output functionals or their commission errors may be depicted on a map using automatically selected cartographic projection.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Distribution of pore space and degree of cementation appear to be the main factors controlling the permeability of sediments retrieved from the Lau Basin. The undisturbed microfabrics of two lithologies, nannofossil ooze and vitric sandy silt, commonly found at Holes 834A, 835A, 838A, and 839Aof Leg 135 were examined by scanning electron microscopy equipped with energy dispersive X-ray spectral analysis and image analysis systems. The results of these analyses were compared with laboratory determinations of porosity, grain-size distribution, and permeability on discrete samples from the same sediment depths. The permeability of the vitric sandy silt is 3-5 orders of magnitude higher than the nannofossil ooze samples. The porosity of nannofossil ooze ranges from 6% to 12% greater than the porosity of vitric sandy silt, which partially reflects the finer texture of nannofossil ooze. Although the correlation of higher porosity with lower permeability is not surprising, factors other than simply grain-size distribution must be invoked to explain the large differences in permeability found in these samples.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Recently published studies of Ocean Drilling Project (ODP) cores from near southeast Asia revealed microtektite contents much higher than those in previously studied cores, suggesting that Ir contents might be enhanced in the tektite-bearing horizons. We determined a positive Ir anomaly in ODP core 758B from the Ninetyeast Ridge, eastern Indian Ocean; the peak Ir concentration of 190 pg/ g was ~2X the continuum level. The net Ir fluence is 1.8+/-0.5 ng/cm**2 over the depth interval from 10.87 to 11.32 m; a small additional peak also associated with microtektites contributes another 0.5 ng Ir/cm**2. Concentrations of Ir in core 769A show more scatter, but a small Ir enhancement is associated with the peak microtektite abundance; our best estimate of the poorly constrained fluence is 1.3+/-0.7 ng/cm**2. Data on deep-sea cores show that the microtektite fluence falls exponentially away from southeast Asia, the fluence dropping a factor of 2 in ~400 km. In southeast Asia the trend merges with a roughly estimated mass fluence of ~1.1 g/cm**2 inferred from evidence of a melt sheet in northeast Thailand. Integration of the inferred distribution yields a total mass of Australasian tektites of 3.2x10**16 g, much higher than previous estimates. Assuming a similar fallout distribution for the impactor and a chondritic composition allows us to calculate its mass to be 1.5x10**15 g, about 3 orders of magnitude smaller than the minimum mass of the impactor responsible for the extinctions at the end of the Cretaceous.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The giant pockmark REGAB (West African margin, 3160 m water depth) is an active methane-emitting cold seep ecosystem, where the energy derived from microbially mediated oxidation of methane supports high biomass and diversity of chemosynthetic communities. Bare sediments interspersed with heterogeneous chemosynthetic assemblages of mytilid mussels, vesicomyid clams and siboglinid tubeworms form a complex seep ecosystem. To better understand if benthic bacterial communities reflect the patchy distribution of chemosynthetic fauna, all major chemosynthetic habitats at REGAB were investigated using an interdisciplinary approach combining porewater geochemistry, in situ quantification of fluxes and consumption of methane, as well bacterial community fingerprinting. This study revealed that sediments populated by different fauna assemblages show distinct biogeochemical activities and are associated with distinct sediment bacterial communities. The methane consumption and methane effluxes ranged over one to two orders of magnitude across habitats, and reached highest values at the mussel habitat, which hosted a different bacterial community compared to the other habitats. Clam assemblages had a profound impact on the sediment geochemistry, but less so on the bacterial community structure. Moreover, all clam assemblages at REGAB were restricted to sediments characterized by complete methane consumption in the seafloor, and intermediate biogeochemical activity. Overall, variations in the sediment geochemistry were reflected in the distribution of both fauna and microbial communities; and were mostly determined by methane flux.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A. Continental slope sediments off Spanish-Sahara and Senegal contain up to 4% organic carbon and up to 0.4% total nitrogen. The highest concentrations were found in sediments from water depths between 1000 and 2000 m. The regional and vertical distribution of organic matter differs significantly. Off Spanish-Sahara the organic matter content of sediment deposited during glacial times (Wuerm, Late Riss) is high whereas sediments deposited during interglacial times (Recent, Eem) are low in organic matter. Opposite distribution was found in sediments off Senegal. The sediments contain 30 to 130 ppm of fixed nitrogen. In most sediments this corresponds to 2-8 % of the total nitrogen. Only in sediments deposited during interglacial times off Spanish-Sahara up to 20 % of the total nitrogen is contained as inorganically bound nitrogen. Positive correlations of the fixed nitrogen concentrations to the amounts of clay, alumina, and potassium suggest that it is primarily fixed to illites. The amino acid nitrogen and hexosamine nitrogen account for 17 to 26 % and 1.3 to 2.4 %, respectively of the total nitrogen content of the sediments. The concentrations vary between 200 and 850 ppm amino acid nitrogen and 20 to 70 ppm hexosamine nitrogen, both parallel the fluctiations of organic matter in the sediment. Fulvic acids, humic acids, and the total organic matter of the sediments may be clearly differentiated from one another and their amino acid and hexosamine contents and their amino acid composition: a) Fulvic acids contain only half as much amino acids as humic acids b) The molar amino acid/hexosamine ratios of the fulvic acids are half those of the humic acids and the total organic matter of the sediment c) The amino acid spectra of fulvic acids are characterized by an enrichment of aspartic acid, alanine, and methionine sulfoxide and a depletion of glycine, valine, isoleucine, leucine, tyrosine, phenylalanine, lysine, and arginine compared to the spectra of the humic acids and those of the total organic matter fraction of the sediment. d) The amino acid spectra of the humic acids and those of the total organic matter fraction of the sediments are about the same with the exception that arginine is clearly enriched in the total organic matter. In general, as indicated by the amino compounds humic acids resemble closer the total organic matter composition than the low molecular fulvic acids do. This supports the general idea that during the course of diagenesis in reducing sediments organic matter stabilizes from a fulvic-like structure to humic-like structure and finally to kerogen. The decomposition rates of single aminio acids differ significantly from one another. Generally amino acids which are preferentially contained in humic acids and the total organic matter fraction show a smaller loss with time than those preferably well documented in case of the basic amino acids lysine and arginine which- although thermally unstable- are the most stable amino acids in the sediments. A favoured incorporation of these compounds into high molecular substances as well as into clay minerals may explain their relatively high "stability" in the sediment. The nitrogen loss from the sediments due to the activity of sulphate-reducing bacteria amounts to 20-40 % of the total organic nitrogen now present. At least 40 % of the organic nitrogen which is liberated by sulphate-reducing bacteria can be explained ny decomposition of amino acids alone. B. Deep-sea sediments from the Central Pacific The deep-seas sediments contain 1 to 2 orders of magnitude less organic matter than the continental slope sediments off NW Africa, i.e. 0.04 to 0.3 % organic carbon. The fixed nitrogen content of the deep-sea sediments ranges from 60 to 270 ppm or from 20 to 45 % of the total nitrogen content. While ammonia is the prevailing inorganic nitrogen compound in anoxic pore waters, nitrate predominates in the oxic environment of the deep-sea sediments. Near the sediment/water interface interstital nitrate concentrations of around 30 µg-at. N/l were recorded. These generally increase with sediment depth by 10 to 15 µg-at. NO3- N/l. This suggests the presence of free oxygen and the activity of nitrifying bacteria in the interstitial waters. The ammonia content of the interstitial water of the oxic deep-sea sediments ranges from 2 to 60 µg-at. N/l and thus is several orders of magnitude less than in anoxic sediments. In contrast to recorded nitrate gradients towards the sediments/water interface, there are no ammonia concentration gradients. However, ammonia concentrations appear to be characteristic for certain regional areas. It is suggested that this regional differentiation is caused by ion exchange reactions involving potassium and ammonium ions rather than by different decomposition rates of organic matter. C. C/N ratios All estimated C/N ratios of surface sediments vary between 3 and 9 in the deep-sea and the continental margin, respectively. Whereas the C/N ratios generally increase with depth in the sediment cores off NW Africa they decrease in the deep-sea cores. The lowest values of around 1.3 were found in the deeper sections of the deep-sea cores, the highest of around 10 in the sediments off NW Africa. The wide range of the C/N ratios as well as their opposite behaviour with increasing sediment depth in both the deep-sea and continental margin sediment cores, can be attributed mainly to the combination of the following three factors: 1. Inorganic and organic substances bound within the latticed of clay minerals tend to decrease the C/N ratios. 2. Organic matter not protected by absorption on the clay minerals tends to increase C/N ratios 3. Diagenetic alteration of organic matter by micro-organisms tends to increase C/N ratios through preferential loss of nitrogen The diagenetic changes of the microbially decomposable organic matter results in both oxic and anoxic environments in a preferential loss of nitrogen and hence in higher C/N ratios of the organic fraction. This holds true for most of the continental margin sediments off NW Africa which contain relatively high amounts of organic matter so that factors 2 and 3 predominate there. The relative low C/N ratios of the sediments deposited during interglacial times off Spanish-Sahara, which are low in organic carbon, show the increasing influence of factor 1 - the nitrogen-rich organic substances bound to clay minerals. In the deep-sea sediments from the Central Pacific this factor completely predominates so that the C/N rations of the sediments approach that of the substance absorbed to clay minerals with decreasing organic matter content. In the deeper core sections the unprotected organic matter has been completely destroyed so that the C/N ratios of the total sediments eventually fall into the same range as those of the pure clay mineral fraction.