925 resultados para open-circuit potential transients
Resumo:
Earth observations (EO) represent a growing and valuable resource for many scientific, research and practical applications carried out by users around the world. Access to EO data for some applications or activities, like climate change research or emergency response activities, becomes indispensable for their success. However, often EO data or products made of them are (or are claimed to be) subject to intellectual property law protection and are licensed under specific conditions regarding access and use. Restrictive conditions on data use can be prohibitive for further work with the data. Global Earth Observation System of Systems (GEOSS) is an initiative led by the Group on Earth Observations (GEO) with the aim to provide coordinated, comprehensive, and sustained EO and information for making informed decisions in various areas beneficial to societies, their functioning and development. It seeks to share data with users world-wide with the fewest possible restrictions on their use by implementing GEOSS Data Sharing Principles adopted by GEO. The Principles proclaim full and open exchange of data shared within GEOSS, while recognising relevant international instruments and national policies and legislation through which restrictions on the use of data may be imposed.The paper focuses on the issue of the legal interoperability of data that are shared with varying restrictions on use with the aim to explore the options of making data interoperable. The main question it addresses is whether the public domain or its equivalents represent the best mechanism to ensure legal interoperability of data. To this end, the paper analyses legal protection regimes and their norms applicable to EO data. Based on the findings, it highlights the existing public law statutory, regulatory, and policy approaches, as well as private law instruments, such as waivers, licenses and contracts, that may be used to place the datasets in the public domain, or otherwise make them publicly available for use and re-use without restrictions. It uses GEOSS and the particular characteristics of it as a system to identify the ways to reconcile the vast possibilities it provides through sharing of data from various sources and jurisdictions on the one hand, and the restrictions on the use of the shared resources on the other. On a more general level the paper seeks to draw attention to the obstacles and potential regulatory solutions for sharing factual or research data for the purposes that go beyond research and education.
Resumo:
The in-medium physics of heavy quarkonium is an ideal proving ground for our ability to connect knowledge about the fundamental laws of physics to phenomenological predictions. One possible route to take is to attempt a description of heavy quark bound states at finite temperature through a Schrödinger equation with an instantaneous potential. Here we review recent progress in devising a comprehensive approach to define such a potential from first principles QCD and extract its, in general complex, values from non-perturbative lattice QCD simulations. Based on the theory of open quantum systems we will show how to interpret the role of the imaginary part in terms of spatial decoherence by introducing the concept of a stochastic potential. Shortcomings as well as possible paths for improvement are discussed.
Resumo:
AIMS Device-based pacing-induced diaphragmatic stimulation (PIDS) may have therapeutic potential for chronic heart failure (HF) patients. We studied the effects of PIDS on cardiac function and functional outcomes. METHODS AND RESULTS In 24 chronic HF patients with CRT, an additional electrode was attached to the left diaphragm. Randomized into two groups, patients received the following PIDS modes for 3 weeks in a different sequence: (i) PIDS off (control group); (ii) PIDS 0 ms mode (PIDS simultaneously with ventricular CRT pulse); or (iii) PIDS optimized mode (PIDS with optimized delay to ventricular CRT pulse). For PIDS optimization, acoustic cardiography was used. Effects of each PIDS mode on dyspnoea, power during exercise testing, and LVEF were assessed. Dyspnoea improved with the PIDS 0 ms mode (P = 0.057) and the PIDS optimized mode (P = 0.034) as compared with the control group. Maximal power increased from median 100.5 W in the control group to 104.0 W in the PIDS 0 ms mode (P = 0.092) and 109.5 W in the PIDS optimized mode (P = 0.022). Median LVEF was 33.5% in the control group, 33.0% in the PIDS 0 ms mode, and 37.0% in the PIDS optimized mode (P = 0.763 and P = 0.009 as compared with the control group, respectively). PIDS was asymptomatic in all patients. CONCLUSION PIDS improves dyspnoea, working capacity, and LVEF in chronic HF patients over a 3 week period in addition to CRT. This pilot study demonstrates proof of principle of an innovative technology which should be confirmed in a larger sample. TRIAL REGISTRATION NCT00769678.
Resumo:
Treatment for cancer often involves combination therapies used both in medical practice and clinical trials. Korn and Simon listed three reasons for the utility of combinations: 1) biochemical synergism, 2) differential susceptibility of tumor cells to different agents, and 3) higher achievable dose intensity by exploiting non-overlapping toxicities to the host. Even if the toxicity profile of each agent of a given combination is known, the toxicity profile of the agents used in combination must be established. Thus, caution is required when designing and evaluating trials with combination therapies. Traditional clinical design is based on the consideration of a single drug. However, a trial of drugs in combination requires a dose-selection procedure that is vastly different than that needed for a single-drug trial. When two drugs are combined in a phase I trial, an important trial objective is to determine the maximum tolerated dose (MTD). The MTD is defined as the dose level below the dose at which two of six patients experience drug-related dose-limiting toxicity (DLT). In phase I trials that combine two agents, more than one MTD generally exists, although all are rarely determined. For example, there may be an MTD that includes high doses of drug A with lower doses of drug B, another one for high doses of drug B with lower doses of drug A, and yet another for intermediate doses of both drugs administered together. With classic phase I trial designs, only one MTD is identified. Our new trial design allows identification of more than one MTD efficiently, within the context of a single protocol. The two drugs combined in our phase I trial are temsirolimus and bevacizumab. Bevacizumab is a monoclonal antibody targeting the vascular endothelial growth factor (VEGF) pathway which is fundamental for tumor growth and metastasis. One mechanism of tumor resistance to antiangiogenic therapy is upregulation of hypoxia inducible factor 1α (HIF-1α) which mediates responses to hypoxic conditions. Temsirolimus has resulted in reduced levels of HIF-1α making this an ideal combination therapy. Dr. Donald Berry developed a trial design schema for evaluating low, intermediate and high dose levels of two drugs given in combination as illustrated in a recently published paper in Biometrics entitled “A Parallel Phase I/II Clinical Trial Design for Combination Therapies.” His trial design utilized cytotoxic chemotherapy. We adapted this design schema by incorporating greater numbers of dose levels for each drug. Additional dose levels are being examined because it has been the experience of phase I trials that targeted agents, when given in combination, are often effective at dosing levels lower than the FDA-approved dose of said drugs. A total of thirteen dose levels including representative high, intermediate and low dose levels of temsirolimus with representative high, intermediate, and low dose levels of bevacizumab will be evaluated. We hypothesize that our new trial design will facilitate identification of more than one MTD, if they exist, efficiently and within the context of a single protocol. Doses gleaned from this approach could potentially allow for a more personalized approach in dose selection from among the MTDs obtained that can be based upon a patient’s specific co-morbid conditions or anticipated toxicities.
Resumo:
Medical instrumentation used in diagnosis and treatment relies on the accurate detection and processing of various physiological events and signals. While signal detection technology has improved greatly in recent years, there remain inherent delays in signal detection/ processing. These delays may have significant negative clinical consequences during various pathophysiological events. Reducing or eliminating such delays would increase the ability to provide successful early intervention in certain disorders thereby increasing the efficacy of treatment. In recent years, a physical phenomenon referred to as Negative Group Delay (NGD), demonstrated in simple electronic circuits, has been shown to temporally advance the detection of analog waveforms. Specifically, the output is temporally advanced relative to the input, as the time delay through the circuit is negative. The circuit output precedes the complete detection of the input signal. This process is referred to as signal advance (SA) detection. An SA circuit model incorporating NGD was designed, developed and tested. It imparts a constant temporal signal advance over a pre-specified spectral range in which the output is almost identical to the input signal (i.e., it has minimal distortion). Certain human patho-electrophysiological events are good candidates for the application of temporally-advanced waveform detection. SA technology has potential in early arrhythmia and epileptic seizure detection and intervention. Demonstrating reliable and consistent temporally advanced detection of electrophysiological waveforms may enable intervention with a pathological event (much) earlier than previously possible. SA detection could also be used to improve the performance of neural computer interfaces, neurotherapy applications, radiation therapy and imaging. In this study, the performance of a single-stage SA circuit model on a variety of constructed input signals, and human ECGs is investigated. The data obtained is used to quantify and characterize the temporal advances and circuit gain, as well as distortions in the output waveforms relative to their inputs. This project combines elements of physics, engineering, signal processing, statistics and electrophysiology. Its success has important consequences for the development of novel interventional methodologies in cardiology and neurophysiology as well as significant potential in a broader range of both biomedical and non-biomedical areas of application.
Resumo:
This participatory action-research project addressed the hypothesis that strengthened community and women's capacity for self-development will lead to action to address maternal health problems and the prevention of maternal morbidity and mortality in Mali. Research objectives were: (1) to undertake a comparative cross-sectional study of the association of community capacity with improved maternal health in rural areas of Sanando, Mali, where capacity building interventions have taken place in some villages but not in others. (2) to describe women's maternal health status, access to and use of maternal health services given their residence in program or comparison communities.^ The participatory action research project was an integrated qualitative and quantitative study using participatory rural appraisal exercises, semi-structured group interviews and a cross-sectional survey.^ Factors related to community capacity for self-development were identified: community harmony; an understanding of the benefits of self-development; dynamic leadership; and a structure to implement collective activities.^ A distinct difference between the program and comparison villages was the commitment to train and support traditional birth attendants (TBAs). The TBAs in the program villages work in the context of the wider, integrated self-development program and, 10 years after their initial training, the TBAs continue to practice.^ Many women experience labor and childbirth alone or are attended by an untrained relative in both program and comparison villages. Nevertheless a significant change is apparent, with more women in program villages than in comparison villages being assisted by the TBAs. The delivery practices of the TBAs reveal the positive impact of their training in the "three cleans" (clean hands of the assistant, clean delivery surface and clean cord-cutting). The findings of this study indicate a significant level of unmet need for child spacing methods in all villages.^ The training and support of TBAs in the program villages yielded significant improvements in their delivery practices, and resulting outcomes for women and infants. However, potential exists for further community action. Capacities for self-development have not yet been directed toward an action plan encompassing other Safe Motherhood interventions, including access to family planning services and emergency obstetric care services. ^
Resumo:
PURPOSE Hodgkin lymphoma (HL) is a highly curable disease. Reducing late complications and second malignancies has become increasingly important. Radiotherapy target paradigms are currently changing and radiotherapy techniques are evolving rapidly. DESIGN This overview reports to what extent target volume reduction in involved-node (IN) and advanced radiotherapy techniques, such as intensity-modulated radiotherapy (IMRT) and proton therapy-compared with involved-field (IF) and 3D radiotherapy (3D-RT)- can reduce high doses to organs at risk (OAR) and examines the issues that still remain open. RESULTS Although no comparison of all available techniques on identical patient datasets exists, clear patterns emerge. Advanced dose-calculation algorithms (e.g., convolution-superposition/Monte Carlo) should be used in mediastinal HL. INRT consistently reduces treated volumes when compared with IFRT with the exact amount depending on the INRT definition. The number of patients that might significantly benefit from highly conformal techniques such as IMRT over 3D-RT regarding high-dose exposure to organs at risk (OAR) is smaller with INRT. The impact of larger volumes treated with low doses in advanced techniques is unclear. The type of IMRT used (static/rotational) is of minor importance. All advanced photon techniques result in similar potential benefits and disadvantages, therefore only the degree-of-modulation should be chosen based on individual treatment goals. Treatment in deep inspiration breath hold is being evaluated. Protons theoretically provide both excellent high-dose conformality and reduced integral dose. CONCLUSION Further reduction of treated volumes most effectively reduces OAR dose, most likely without disadvantages if the excellent control rates achieved currently are maintained. For both IFRT and INRT, the benefits of advanced radiotherapy techniques depend on the individual patient/target geometry. Their use should therefore be decided case by case with comparative treatment planning.
Resumo:
This article provides an overview on procedure-related issues and uncertainties in outcomes after transcatheter aortic valve implantation (TAVI). The different access sites and how to select them in an individual patient are discussed. Also, the occurrence and potential predictors of aortic regurgitation (AR) after TAVI are addressed. The different methods to quantify AR are reviewed, and it appears that accurate and reproducible quantification is suboptimal. Complications such as prosthesis-patient mismatch and conduction abnormalities (and need for permanent pacemaker) are discussed, as well as cerebrovascular events, which emphasize the development of optimal anti-coagulative strategies. Finally, recent registries have shown the adoption of TAVI in the real world, but longer follow-up studies are needed to evaluate the outcome (but also prosthesis durability). Additionally, future studies are briefly discussed, which will address the use of TAVI in pure AR and lower-risk patients.
Resumo:
BACKGROUND Patients with muscle-invasive urothelial carcinoma of the bladder have poor survival after cystectomy. The EORTC 30994 trial aimed to compare immediate versus deferred cisplatin-based combination chemotherapy after radical cystectomy in patients with pT3-pT4 or N+ M0 urothelial carcinoma of the bladder. METHODS This intergroup, open-label, randomised, phase 3 trial recruited patients from hospitals across Europe and Canada. Eligible patients had histologically proven urothelial carcinoma of the bladder, pT3-pT4 disease or node positive (pN1-3) M0 disease after radical cystectomy and bilateral lymphadenectomy, with no evidence of any microscopic residual disease. Within 90 days of cystectomy, patients were centrally randomly assigned (1:1) by minimisation to either immediate adjuvant chemotherapy (four cycles of gemcitabine plus cisplatin, high-dose methotrexate, vinblastine, doxorubicin, and cisplatin [high-dose MVAC], or MVAC) or six cycles of deferred chemotherapy at relapse, with stratification for institution, pT category, and lymph node status according to the number of nodes dissected. Neither patients nor investigators were masked. Overall survival was the primary endpoint; all analyses were by intention to treat. The trial was closed after recruitment of 284 of the planned 660 patients. This trial is registered with ClinicalTrials.gov, number NCT00028756. FINDINGS From April 29, 2002, to Aug 14, 2008, 284 patients were randomly assigned (141 to immediate treatment and 143 to deferred treatment), and followed up until the data cutoff of Aug 21, 2013. After a median follow-up of 7·0 years (IQR 5·2-8·7), 66 (47%) of 141 patients in the immediate treatment group had died compared with 82 (57%) of 143 in the deferred treatment group. No significant improvement in overall survival was noted with immediate treatment when compared with deferred treatment (adjusted HR 0·78, 95% CI 0·56-1·08; p=0·13). Immediate treatment significantly prolonged progression-free survival compared with deferred treatment (HR 0·54, 95% CI 0·4-0·73, p<0·0001), with 5-year progression-free survival of 47·6% (95% CI 38·8-55·9) in the immediate treatment group and 31·8% (24·2-39·6) in the deferred treatment group. Grade 3-4 myelosuppression was reported in 33 (26%) of 128 patients who received treatment in the immediate chemotherapy group versus 24 (35%) of 68 patients who received treatment in the deferred chemotherapy group, neutropenia occurred in 49 (38%) versus 36 (53%) patients, respectively, and thrombocytopenia in 36 (28%) versus 26 (38%). Two patients died due to toxicity, one in each group. INTERPRETATION Our data did not show a significant improvement in overall survival with immediate versus deferred chemotherapy after radical cystectomy and bilateral lymphadenectomy for patients with muscle-invasive urothelial carcinoma. However, the trial is limited in power, and it is possible that some subgroups of patients might still benefit from immediate chemotherapy. An updated individual patient data meta-analysis and biomarker research are needed to further elucidate the potential for survival benefit in subgroups of patients. FUNDING Lilly, Canadian Cancer Society Research.
Resumo:
UNLABELLED Treatment effects over 2 years of teriparatide vs. ibandronate in postmenopausal women with osteoporosis were compared using lumbar spine bone mineral density (BMD) and trabecular bone score (TBS). Teriparatide induced larger increases in BMD and TBS compared to ibandronate, suggesting a more pronounced effect on bone microarchitecture of the bone anabolic drug. INTRODUCTION The trabecular bone score (TBS) is an index of bone microarchitecture, independent of bone mineral density (BMD), calculated from anteroposterior spine dual X-ray absorptiometry (DXA) scans. The potential role of TBS for monitoring treatment response with bone-active substances is not established. The aim of this study was to compare the effects of recombinant human 1-34 parathyroid hormone (teriparatide) and the bisphosphonate ibandronate (IBN), on lumbar spine (LS) BMD and TBS in postmenopausal women with osteoporosis. METHODS Two patient groups with matched age, body mass index (BMI), and baseline LS BMD, treated with either daily subcutaneous teriparatide (N = 65) or quarterly intravenous IBN (N = 122) during 2 years and with available LS BMD measurements at baseline and 2 years after treatment initiation were compared. RESULTS Baseline characteristics (overall mean ± SD) were similar between groups in terms of age 67.9 ± 7.4 years, body mass index 23.8 ± 3.8 kg/m(2), BMD L1-L4 0.741 ± 0.100 g/cm(2), and TBS 1.208 ± 0.100. Over 24 months, teriparatide induced a significantly larger increase in LS BMD and TBS than IBN (+7.6 % ± 6.3 vs. +2.9 % ± 3.3 and +4.3 % ± 6.6 vs. +0.3 % ± 4.1, respectively; P < 0.0001 for both). LS BMD and TBS were only weakly correlated at baseline (r (2) = 0.04) with no correlation between the changes in BMD and TBS over 24 months. CONCLUSIONS In postmenopausal women with osteoporosis, a 2-year treatment with teriparatide led to a significantly larger increase in LS BMD and TBS than IBN, suggesting that teriparatide had more pronounced effects on bone microarchitecture than IBN.
Resumo:
γ-Aminobutyric acid type A receptors (GABAA receptors) are chloride ion channels composed of five subunits, mediating fast synaptic and tonic inhibition in the mammalian brain. These receptors show near five-fold symmetry that is most pronounced in the second trans-membrane domain M2 lining the Cl- ion channel. To take advantage of this inherent symmetry, we screened a variety of aromatic anions with matched symmetry and found an inhibitor, pentacyanocyclopentdienyl anion (PCCP-) that exhibited all characteristics of an open channel blocker. Inhibition was strongly dependent on the membrane potential. Through mutagenesis and covalent modification, we identified the region α1V256-α1T261 in the rat recombinant GABAA receptor to be important for PCCP- action. Introduction of positive charges into M2 increased the affinity for PCCP- while PCCP- prevented the access of a positively charged molecule into M2. Interestingly, other anion selective cys-loop receptors were also inhibited by PCCP-, among them the Drosophila RDL GABAA receptor carrying an insecticide resistance mutation, suggesting that PCCP- could serve as an insecticide.
Resumo:
Giardia lamblia is a protozoan parasite that causes giardiasis, a diarrhoeal disease affecting humans and various animal species. Nitro drugs such as the nitroimidazole metronidazole and the nitrothiazolide nitazoxanide are used for treatment of giardiasis. Nitroreductases such as GlNR1 and GlNR2 may play a role in activation or inactivation of these drugs. The aim of this work is to characterise these two enzymes using functional assays. For respective analyses recombinant analogues from GlNR1 and GlNR2 were produced in Escherichia coli. E. coli expressing GlNR1 and GlNR2 alone or together were grown in the presence of nitro compounds. Furthermore, pull-down assays were performed using HA-tagged GlNR1 and GlNR2 as baits. As expected, E. coli expressing GlNR1 were more susceptible to metronidazole under aerobic and semi-aerobic and to nitazoxanide under semi-aerobic growth conditions whereas E. coli expressing GlNR2 were susceptible to neither drug. Interestingly, expression of both nitroreductases gave the same results as expression of GlNR2 alone. In functional assays, both nitroreductases had their strongest activities on the quinone menadione (vitamin K3) and FAD, but reduction of nitro compounds including the nitro drugs metronidazole and nitazoxanidewas clearly detected. Full reduction of 7-nitrocoumarin to 7-aminocoumarin was preferentially achieved with GlNR2. Pull-down assays revealed that GlNR1 and GlNR2 interacted in vivo forming a multienzyme complex. These findings suggest that both nitroreductases are multifunctional. Their main biological role may reside in the reduction of vitamin K analogues and FAD. Activation by GlNR1 or inactivation by GlNR2 of nitro drugs may be the consequence of a secondary enzymatic activity either yielding (GlNR1) or eliminating (GlNR2) toxic intermediates after reduction of these compounds. © 2015 The Authors. Published by Elsevier Ltd on behalf of Australian Society for Parasitology. This is an open access article under the CC BY-NC-ND license
Resumo:
Sport participation means a privileged access to participate in the sport system and the opportunities of actual integration into sport (Seiberth et al., 2013). The access to sport activities is often restricted for female immigrants. The function of sport participation concerning exercise offers of social associations is not a common theme in research on migration or on sports-related integration. Research on boundaries (Lamont & Molnár, 2002) suggest that gender-related and ethnic boundaries are stable behavioural and cognitive patterns leading to unequal social opportunities. The present study examined the potential of a Swiss intercultural club regarding female immigrants’ integration into sport by focussing on gender-related and ethnic boundaries. Ten interviews with female immigrants and conductress of an intercultural club plus a group discussion were held. Using qualitative content analysis and documentary method, findings reveal multifaceted, interwoven boundaries, e.g. maternal devotion, exclusive exercise offers for women, language learning devotion, religious need of headscarf. Otherwise resources to overcome boundaries are provided: Deploying competent employees; offering childcare, exercise offers suited to mothers‘ time schedule and language lessons; equitable, on integration focussed club-life. Thus, intercultural clubs might help to overcome boundaries and facilitate access to exercise for female immigrants and integrate them more successfully into sport than many sport clubs. A boundary focus and present data may open new perspectives for sport organisation and integration research. Further investigations of social associations offering exercise are advised.
Resumo:
BACKGROUND Buruli ulcer (BU) is a necrotizing skin disease most prevalent among West African children. The causative organism, Mycobacterium ulcerans, is sensitive to temperatures above 37°C. We investigated the safety and efficacy of a local heat application device based on phase change material. METHODS In a phase II open label single center noncomparative clinical trial (ISRCTN 72102977) under GCP standards in Cameroon, laboratory confirmed BU patients received up to 8 weeks of heat treatment. We assessed efficacy based on the endpoints 'absence of clinical BU specific features' or 'wound closure' within 6 months ("primary cure"), and 'absence of clinical recurrence within 24 month' ("definite cure"). RESULTS Of 53 patients 51 (96%) had ulcerative disease. 62% were classified as World Health Organization category II, 19% each as category I and III. The average lesion size was 45 cm(2). Within 6 months after completion of heat treatment 92.4% (49 of 53, 95% confidence interval [CI], 81.8% to 98.0%) achieved cure of their primary lesion. At 24 months follow-up 83.7% (41 of 49, 95% CI, 70.3% to 92.7%) of patients with primary cure remained free of recurrence. Heat treatment was well tolerated; adverse effects were occasional mild local skin reactions. CONCLUSIONS Local thermotherapy is a highly effective, simple, cheap and safe treatment for M. ulcerans disease. It has in particular potential as home-based remedy for BU suspicious lesions at community level where laboratory confirmation is not available. CLINICAL TRIALS REGISTRATION ISRCT 72102977.
Resumo:
Glioblastoma multiforme (GBM) tumors are the most common malignant primary brain tumors in adults. The current theory is that these tumors are caused by self-renewing glioblastoma-derived stem cells (GSCs). At the current time, the mechanisms that regulate self-renewal and other oncogenic properties of GSCs remain unknown. Recently, we found transcriptional repressor REST maintains self-renewal in neural stem cells (NSCs) and in GSCs. REST also regulates other oncogenic properties, such as apoptosis, invasion and proliferation. However, the mechanisms by which REST regulates these oncogenic properties are unknown. In an attempt to determine these mechanisms, we performed loss and gain-of-function experiments and genome-wide mRNA expression analysis in GSCs, and we were able to identify REST-regulated genes in GSCs. This was accomplished, after screening concordantly regulated genes in NSCs and GSCs, utilizing two RE1 databases, and setting two-fold expression as filters on the resulting genes. These results received further validation by qRT-PCR. Ingenuity Pathway Analysis (IPA) analysis further revealed the top REST target genes in GSCs were downstream targets of REST and/or involved in other cancers in other cell lines. IPA also revealed that many of the differentially-regulated genes identified in this study are involved in oncogenic properties seen in GBM, and which we believe are related to REST expression.