930 resultados para nonlinear dimensionality reduction
Resumo:
In this paper a nonlinear optimal controller has been designed for aerodynamic control during the reentry phase of the Reusable Launch Vehicle (RLV). The controller has been designed based on a recently developed technique Optimal Dynamic Inversion (ODI). For full state feedback the controller has required full information about the system states. In this work an Extended Kalman filter (EKF) is developed to estimate the states. The vehicle (RLV) has been has been consider as a nonlinear Six-Degree-Of-Freedom (6-DOF) model. The simulation results shows that EKF gives a very good estimation of the states and it is working well with ODI. The resultant trajectories are very similar to those obtained by perfect state feedback using ODI only.
Resumo:
The problem of identifying parameters of nonlinear vibrating systems using spatially incomplete, noisy, time-domain measurements is considered. The problem is formulated within the framework of dynamic state estimation formalisms that employ particle filters. The parameters of the system, which are to be identified, are treated as a set of random variables with finite number of discrete states. The study develops a procedure that combines a bank of self-learning particle filters with a global iteration strategy to estimate the probability distribution of the system parameters to be identified. Individual particle filters are based on the sequential importance sampling filter algorithm that is readily available in the existing literature. The paper develops the requisite recursive formulary for evaluating the evolution of weights associated with system parameter states. The correctness of the formulations developed is demonstrated first by applying the proposed procedure to a few linear vibrating systems for which an alternative solution using adaptive Kalman filter method is possible. Subsequently, illustrative examples on three nonlinear vibrating systems, using synthetic vibration data, are presented to reveal the correct functioning of the method. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
A method of testing for parametric faults of analog circuits based on a polynomial representation of fault-free function of the circuit is presented. The response of the circuit under test (CUT) is estimated as a polynomial in the applied input voltage at relevant frequencies in addition to DC. Classification or Cur is based on a comparison of the estimated polynomial coefficients with those of the fault free circuit. This testing method requires no design for test hardware as might be added to the circuit fly some other methods. The proposed method is illustrated for a benchmark elliptic filter. It is shown to uncover several parametric faults causing deviations as small as 5% from the nominal values.
Resumo:
Cyclosporine is an immunosuppressant drug with a narrow therapeutic index and large variability in pharmacokinetics. To improve cyclosporine dose individualization in children, we used population pharmacokinetic modeling to study the effects of developmental, clinical, and genetic factors on cyclosporine pharmacokinetics in altogether 176 subjects (age range: 0.36–20.2 years) before and up to 16 years after renal transplantation. Pre-transplantation test doses of cyclosporine were given intravenously (3 mg/kg) and orally (10 mg/kg), on separate occasions, followed by blood sampling for 24 hours (n=175). After transplantation, in a total of 137 patients, cyclosporine concentration was quantified at trough, two hours post-dose, or with dose-interval curves. One-hundred-four of the studied patients were genotyped for 17 putatively functionally significant sequence variations in the ABCB1, SLCO1B1, ABCC2, CYP3A4, CYP3A5, and NR1I2 genes. Pharmacokinetic modeling was performed with the nonlinear mixed effects modeling computer program, NONMEM. A 3-compartment population pharmacokinetic model with first order absorption without lag-time was used to describe the data. The most important covariate affecting systemic clearance and distribution volume was allometrically scaled body weight i.e. body weight**3/4 for clearance and absolute body weight for volume of distribution. The clearance adjusted by absolute body weight declined with age and pre-pubertal children (< 8 years) had an approximately 25% higher clearance/body weight (L/h/kg) than did older children. Adjustment of clearance for allometric body weight removed its relationship to age after the first year of life. This finding is consistent with a gradual reduction in relative liver size towards adult values, and a relatively constant CYP3A content in the liver from about 6–12 months of age to adulthood. The other significant covariates affecting cyclosporine clearance and volume of distribution were hematocrit, plasma cholesterol, and serum creatinine, explaining up to 20%–30% of inter-individual differences before transplantation. After transplantation, their predictive role was smaller, as the variations in hematocrit, plasma cholesterol, and serum creatinine were also smaller. Before transplantation, no clinical or demographic covariates were found to affect oral bioavailability, and no systematic age-related changes in oral bioavailability were observed. After transplantation, older children receiving cyclosporine twice daily as the gelatine capsule microemulsion formulation had an about 1.25–1.3 times higher bioavailability than did the younger children receiving the liquid microemulsion formulation thrice daily. Moreover, cyclosporine oral bioavailability increased over 1.5-fold in the first month after transplantation, returning thereafter gradually to its initial value in 1–1.5 years. The largest cyclosporine doses were administered in the first 3–6 months after transplantation, and thereafter the single doses of cyclosporine were often smaller than 3 mg/kg. Thus, the results suggest that cyclosporine displays dose-dependent, saturable pre-systemic metabolism even at low single doses, whereas complete saturation of CYP3A4 and MDR1 (P-glycoprotein) renders cyclosporine pharmacokinetics dose-linear at higher doses. No significant associations were found between genetic polymorphisms and cyclosporine pharmacokinetics before transplantation in the whole population for which genetic data was available (n=104). However, in children older than eight years (n=22), heterozygous and homozygous carriers of the ABCB1 c.2677T or c.1236T alleles had an about 1.3 times or 1.6 times higher oral bioavailability, respectively, than did non-carriers. After transplantation, none of the ABCB1 SNPs or any other SNPs were found to be associated with cyclosporine clearance or oral bioavailability in the whole population, in the patients older than eight years, or in the patients younger than eight years. In the whole population, in those patients carrying the NR1I2 g.-25385C–g.-24381A–g.-205_-200GAGAAG–g.7635G–g.8055C haplotype, however, the bioavailability of cyclosporine was about one tenth lower, per allele, than in non-carriers. This effect was significant also in a subgroup of patients older than eight years. Furthermore, in patients carrying the NR1I2 g.-25385C–g.-24381A–g.-205_-200GAGAAG–g.7635G–g.8055T haplotype, the bioavailability was almost one fifth higher, per allele, than in non-carriers. It may be possible to improve individualization of cyclosporine dosing in children by accounting for the effects of developmental factors (body weight, liver size), time after transplantation, and cyclosporine dosing frequency/formulation. Further studies are required on the predictive value of genotyping for individualization of cyclosporine dosing in children.
Resumo:
The output of a laser is a high frequency propagating electromagnetic field with superior coherence and brightness compared to that emitted by thermal sources. A multitude of different types of lasers exist, which also translates into large differences in the properties of their output. Moreover, the characteristics of the electromagnetic field emitted by a laser can be influenced from the outside, e.g., by injecting an external optical field or by optical feedback. In the case of free-running solitary class-B lasers, such as semiconductor and Nd:YVO4 solid-state lasers, the phase space is two-dimensional, the dynamical variables being the population inversion and the amplitude of the electromagnetic field. The two-dimensional structure of the phase space means that no complex dynamics can be found. If a class-B laser is perturbed from its steady state, then the steady state is restored after a short transient. However, as discussed in part (i) of this Thesis, the static properties of class-B lasers, as well as their artificially or noise induced dynamics around the steady state, can be experimentally studied in order to gain insight on laser behaviour, and to determine model parameters that are not known ab initio. In this Thesis particular attention is given to the linewidth enhancement factor, which describes the coupling between the gain and the refractive index in the active material. A highly desirable attribute of an oscillator is stability, both in frequency and amplitude. Nowadays, however, instabilities in coupled lasers have become an active area of research motivated not only by the interesting complex nonlinear dynamics but also by potential applications. In part (ii) of this Thesis the complex dynamics of unidirectionally coupled, i.e., optically injected, class-B lasers is investigated. An injected optical field increases the dimensionality of the phase space to three by turning the phase of the electromagnetic field into an important variable. This has a radical effect on laser behaviour, since very complex dynamics, including chaos, can be found in a nonlinear system with three degrees of freedom. The output of the injected laser can be controlled in experiments by varying the injection rate and the frequency of the injected light. In this Thesis the dynamics of unidirectionally coupled semiconductor and Nd:YVO4 solid-state lasers is studied numerically and experimentally.
Resumo:
To mitigate the effects of climate change, countries worldwide are advancing technologies to reduce greenhouse gas emissions. This paper proposes and measures optimal production resource reallocation using data envelopment analysis. This research attempts to clarify the effect of optimal production resource reallocation on CO2 emissions reduction, focusing on regional and industrial characteristics. We use finance, energy, and CO2 emissions data from 13 industrial sectors in 39 countries from 1995 to 2009. The resulting emissions reduction potential is 2.54 Gt-CO2 in the year 2009, with former communist countries having the largest potential to reduce CO2 emissions in the manufacturing sectors. In particular, basic material industry including chemical and steel sectors has a lot of potential to reduce CO2 emissions.
Resumo:
Reducing carbon dioxide (CO2) to hydrocarbon fuel with solar energy is significant for high-density solar energy storage and carbon balance. In this work, single palladium/platinum (Pd/Pt) atoms supported on graphitic carbon nitride (g-C3N4), i.e. Pd/g-C3N4 and Pt/g-C3N4, acting as photocatalysts for CO2 reduction were investigated by density function theory (DFT) calcu-lations for the first time. During CO2 reduction, the individual metal atoms function as the active sites, while g-C3N4 provides the source of hydrogen (H*) from hydrogen evolution reaction. The complete, as-designed photocatalysts exhibit excellent activity in CO2 reduction. HCOOH is the preferred product of CO2 reduction on the Pd/g-C3N4 catalyst with a rate-determining barrier of 0.66 eV, while the Pt/g-C3N4 catalyst prefers to reduce CO2 to CH4 with a rate-determining barrier of 1.16 eV. In addition, depositing atom catalysts on g-C3N4 significantly enhances the visible light absorption, rendering them ideal for visible light reduction of CO2. Our findings open a new avenue of CO2 reduction for renewable energy supply.
Resumo:
In this paper an attempt is made to study accurately, the field distribution for various types of porcelain/ceramic insulators used forhigh voltage transmission. The surface charge Simulation method is employed for the field computation. Novel field reduction electrodes are developed to reduce the maximum field around the pin region. In order to experimentally scrutinize the performance of discs with field reduction electrodes, special artificial pollution test facility was built and utilized. The experimental results show better improvement in the pollution flashover performance of string insulators.
Resumo:
The significance of treating rainfall as a chaotic system instead of a stochastic system for a better understanding of the underlying dynamics has been taken up by various studies recently. However, an important limitation of all these approaches is the dependence on a single method for identifying the chaotic nature and the parameters involved. Many of these approaches aim at only analyzing the chaotic nature and not its prediction. In the present study, an attempt is made to identify chaos using various techniques and prediction is also done by generating ensembles in order to quantify the uncertainty involved. Daily rainfall data of three regions with contrasting characteristics (mainly in the spatial area covered), Malaprabha, Mahanadi and All-India for the period 1955-2000 are used for the study. Auto-correlation and mutual information methods are used to determine the delay time for the phase space reconstruction. Optimum embedding dimension is determined using correlation dimension, false nearest neighbour algorithm and also nonlinear prediction methods. The low embedding dimensions obtained from these methods indicate the existence of low dimensional chaos in the three rainfall series. Correlation dimension method is done on th phase randomized and first derivative of the data series to check whether the saturation of the dimension is due to the inherent linear correlation structure or due to low dimensional dynamics. Positive Lyapunov exponents obtained prove the exponential divergence of the trajectories and hence the unpredictability. Surrogate data test is also done to further confirm the nonlinear structure of the rainfall series. A range of plausible parameters is used for generating an ensemble of predictions of rainfall for each year separately for the period 1996-2000 using the data till the preceding year. For analyzing the sensitiveness to initial conditions, predictions are done from two different months in a year viz., from the beginning of January and June. The reasonably good predictions obtained indicate the efficiency of the nonlinear prediction method for predicting the rainfall series. Also, the rank probability skill score and the rank histograms show that the ensembles generated are reliable with a good spread and skill. A comparison of results of the three regions indicates that although they are chaotic in nature, the spatial averaging over a large area can increase the dimension and improve the predictability, thus destroying the chaotic nature. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
When ordinary nuclear matter is heated to a high temperature of ~ 10^12 K, it undergoes a deconfinement transition to a new phase, strongly interacting quark-gluon plasma. While the color charged fundamental constituents of the nuclei, the quarks and gluons, are at low temperatures permanently confined inside color neutral hadrons, in the plasma the color degrees of freedom become dominant over nuclear, rather than merely nucleonic, volumes. Quantum Chromodynamics (QCD) is the accepted theory of the strong interactions, and confines quarks and gluons inside hadrons. The theory was formulated in early seventies, but deriving first principles predictions from it still remains a challenge, and novel methods of studying it are needed. One such method is dimensional reduction, in which the high temperature dynamics of static observables of the full four-dimensional theory are described using a simpler three-dimensional effective theory, having only the static modes of the various fields as its degrees of freedom. A perturbatively constructed effective theory is known to provide a good description of the plasma at high temperatures, where asymptotic freedom makes the gauge coupling small. In addition to this, numerical lattice simulations have, however, shown that the perturbatively constructed theory gives a surprisingly good description of the plasma all the way down to temperatures a few times the transition temperature. Near the critical temperature, the effective theory, however, ceases to give a valid description of the physics, since it fails to respect the approximate center symmetry of the full theory. The symmetry plays a key role in the dynamics near the phase transition, and thus one expects that the regime of validity of the dimensionally reduced theories can be significantly extended towards the deconfinement transition by incorporating the center symmetry in them. In the introductory part of the thesis, the status of dimensionally reduced effective theories of high temperature QCD is reviewed, placing emphasis on the phase structure of the theories. In the first research paper included in the thesis, the non-perturbative input required in computing the g^6 term in the weak coupling expansion of the pressure of QCD is computed in the effective theory framework at an arbitrary number of colors. The two last papers on the other hand focus on the construction of the center-symmetric effective theories, and subsequently the first non-perturbative studies of these theories are presented. Non-perturbative lattice simulations of a center-symmetric effective theory for SU(2) Yang-Mills theory show --- in sharp contrast to the perturbative setup --- that the effective theory accommodates a phase transition in the correct universality class of the full theory. This transition is seen to take place at a value of the effective theory coupling constant that is consistent with the full theory coupling at the critical temperature.
Resumo:
When heated to high temperatures, the behavior of matter changes dramatically. The standard model fields go through phase transitions, where the strongly interacting quarks and gluons are liberated from their confinement to hadrons, and the Higgs field condensate melts, restoring the electroweak symmetry. The theoretical framework for describing matter at these extreme conditions is thermal field theory, combining relativistic field theory and quantum statistical mechanics. For static observables the physics is simplified at very high temperatures, and an effective three-dimensional theory can be used instead of the full four-dimensional one via a method called dimensional reduction. In this thesis dimensional reduction is applied to two distinct problems, the pressure of electroweak theory and the screening masses of mesonic operators in quantum chromodynamics (QCD). The introductory part contains a brief review of finite-temperature field theory, dimensional reduction and the central results, while the details of the computations are contained in the original research papers. The electroweak pressure is shown to converge well to a value slightly below the ideal gas result, whereas the pressure of the full standard model is dominated by the QCD pressure with worse convergence properties. For the mesonic screening masses a small positive perturbative correction is found, and the interpretation of dimensional reduction on the fermionic sector is discussed.
Resumo:
In this paper, we describe how to analyze boundary value problems for third-order nonlinear ordinary differential equations over an infinite interval. Several physical problems of interest are governed by such systems. The seminumerical schemes described here offer some advantages over solutions obtained by using traditional methods such as finite differences, shooting method, etc. These techniques also reveal the analytic structure of the solution function. For illustrative purposes, several physical problems, mainly drawn from fluid mechanics, are considered; they clearly demonstrate the efficiency of the techniques presented here.
Resumo:
This thesis studies quantile residuals and uses different methodologies to develop test statistics that are applicable in evaluating linear and nonlinear time series models based on continuous distributions. Models based on mixtures of distributions are of special interest because it turns out that for those models traditional residuals, often referred to as Pearson's residuals, are not appropriate. As such models have become more and more popular in practice, especially with financial time series data there is a need for reliable diagnostic tools that can be used to evaluate them. The aim of the thesis is to show how such diagnostic tools can be obtained and used in model evaluation. The quantile residuals considered here are defined in such a way that, when the model is correctly specified and its parameters are consistently estimated, they are approximately independent with standard normal distribution. All the tests derived in the thesis are pure significance type tests and are theoretically sound in that they properly take the uncertainty caused by parameter estimation into account. -- In Chapter 2 a general framework based on the likelihood function and smooth functions of univariate quantile residuals is derived that can be used to obtain misspecification tests for various purposes. Three easy-to-use tests aimed at detecting non-normality, autocorrelation, and conditional heteroscedasticity in quantile residuals are formulated. It also turns out that these tests can be interpreted as Lagrange Multiplier or score tests so that they are asymptotically optimal against local alternatives. Chapter 3 extends the concept of quantile residuals to multivariate models. The framework of Chapter 2 is generalized and tests aimed at detecting non-normality, serial correlation, and conditional heteroscedasticity in multivariate quantile residuals are derived based on it. Score test interpretations are obtained for the serial correlation and conditional heteroscedasticity tests and in a rather restricted special case for the normality test. In Chapter 4 the tests are constructed using the empirical distribution function of quantile residuals. So-called Khmaladze s martingale transformation is applied in order to eliminate the uncertainty caused by parameter estimation. Various test statistics are considered so that critical bounds for histogram type plots as well as Quantile-Quantile and Probability-Probability type plots of quantile residuals are obtained. Chapters 2, 3, and 4 contain simulations and empirical examples which illustrate the finite sample size and power properties of the derived tests and also how the tests and related graphical tools based on residuals are applied in practice.
Resumo:
Changes in alcohol pricing have been documented as inversely associated with changes in consumption and alcohol-related problems. Evidence of the association between price changes and health problems is nevertheless patchy and is based to a large extent on cross-sectional state-level data, or time series of such cross-sectional analyses. Natural experimental studies have been called for. There was a substantial reduction in the price of alcohol in Finland in 2004 due to a reduction in alcohol taxes of one third, on average, and the abolition of duty-free allowances for travellers from the EU. These changes in the Finnish alcohol policy could be considered a natural experiment, which offered a good opportunity to study what happens with regard to alcohol-related problems when prices go down. The present study investigated the effects of this reduction in alcohol prices on (1) alcohol-related and all-cause mortality, and mortality due to cardiovascular diseases, (2) alcohol-related morbidity in terms of hospitalisation, (3) socioeconomic differentials in alcohol-related mortality, and (4) small-area differences in interpersonal violence in the Helsinki Metropolitan area. Differential trends in alcohol-related mortality prior to the price reduction were also analysed. A variety of population-based register data was used in the study. Time-series intervention analysis modelling was applied to monthly aggregations of deaths and hospitalisation for the period 1996-2006. These and other mortality analyses were carried out for men and women aged 15 years and over. Socioeconomic differentials in alcohol-related mortality were assessed on a before/after basis, mortality being followed up in 2001-2003 (before the price reduction) and 2004-2005 (after). Alcohol-related mortality was defined in all the studies on mortality on the basis of information on both underlying and contributory causes of death. Hospitalisation related to alcohol meant that there was a reference to alcohol in the primary diagnosis. Data on interpersonal violence was gathered from 86 administrative small-areas in the Helsinki Metropolitan area and was also assessed on a before/after basis followed up in 2002-2003 and 2004-2005. The statistical methods employed to analyse these data sets included time-series analysis, and Poisson and linear regression. The results of the study indicate that alcohol-related deaths increased substantially among men aged 40-69 years and among women aged 50-69 after the price reduction when trends and seasonal variation were taken into account. The increase was mainly attributable to chronic causes, particularly liver diseases. Mortality due to cardiovascular diseases and all-cause mortality, on the other hand, decreased considerably among the-over-69-year-olds. The increase in alcohol-related mortality in absolute terms among the 30-59-year-olds was largest among the unemployed and early-age pensioners, and those with a low level of education, social class or income. The relative differences in change between the education and social class subgroups were small. The employed and those under the age of 35 did not suffer from increased alcohol-related mortality in the two years following the price reduction. The gap between the age and education groups, which was substantial in the 1980s, thus further broadened. With regard to alcohol-related hospitalisation, there was an increase in both chronic and acute causes among men under the age of 70, and among women in the 50-69-year age group when trends and seasonal variation were taken into account. Alcohol dependence and other alcohol-related mental and behavioural disorders were the largest category in both the total number of chronic hospitalisation and in the increase. There was no increase in the rate of interpersonal violence in the Helsinki Metropolitan area, and even a decrease in domestic violence. There was a significant relationship between the measures of social disadvantage on the area level and interpersonal violence, although the differences in the effects of the price reduction between the different areas were small. The findings of the present study suggest that that a reduction in alcohol prices may lead to a substantial increase in alcohol-related mortality and morbidity. However, large population group differences were observed regarding responsiveness to the price changes. In particular, the less privileged, such as the unemployed, were most sensitive. In contrast, at least in the Finnish context, the younger generations and the employed do not appear to be adversely affected, and those in the older age groups may even benefit from cheaper alcohol in terms of decreased rates of CVD mortality. The results also suggest that reductions in alcohol prices do not necessarily affect interpersonal violence. The population group differences in the effects of the price changes on alcohol-related harm should be acknowledged, and therefore the policy actions should focus on the population subgroups that are primarily responsive to the price reduction.