978 resultados para neural algorithms


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objetivo: verificar os níveis de folatos, vitamina B12 e ferritina em pacientes cujos fetos apresentaram defeitos de tubo neural (DTN). O folato sangüíneo e a vitamina B12 atuam como cofatores para as enzimas envolvidas na biossíntese do DNA. A interrupção deste processo pode impedir o fechamento do tubo neural. A suplementação vitamínica contendo folato pode reduzir as taxas de ocorrência de defeitos de tubo neural, embora exista a preocupação de que esta prevenção possa mascarar a deficiência de vitamina B12. Métodos: dosagens de vitamina B12 e ferritina pelo método de enzimaimunoensaio com micropartículas e a dosagens de ácido fólico pelo método de captura iônica (IMx ABBOTT). Resultados: a porcentagem de gestantes com deficiência de vitamina B12 (níveis séricos < 150 pg/ml) foi de 11,8%. Não houve nenhum caso de deficiência de folato (níveis séricos < 3,0 ng/ml). A prevalência de gestantes com deficiência nos estoques de ferro foi de 47,1% (níveis séricos < 12 ng/ml). Conclusões: com os resultados encontrados neste estudo (prevalência de 11,8% de deficientes em vitamina B12 e 0% de deficiência de folato), sugerimos que a suplementação se realize após a determinação da vitamina B12 sérica.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fifty Bursa of Fabricius (BF) were examined by conventional optical microscopy and digital images were acquired and processed using Matlab® 6.5 software. The Artificial Neuronal Network (ANN) was generated using Neuroshell® Classifier software and the optical and digital data were compared. The ANN was able to make a comparable classification of digital and optical scores. The use of ANN was able to classify correctly the majority of the follicles, reaching sensibility and specificity of 89% and 96%, respectively. When the follicles were scored and grouped in a binary fashion the sensibility increased to 90% and obtained the maximum value for the specificity of 92%. These results demonstrate that the use of digital image analysis and ANN is a useful tool for the pathological classification of the BF lymphoid depletion. In addition it provides objective results that allow measuring the dimension of the error in the diagnosis and classification therefore making comparison between databases feasible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Os primeiros estudos demonstrando o potencial de trandiferenciação neural das células-tronco mesenquimais (CTMs) provenientes da medula óssea (MO) foram conduzidos em camundogos e humanos no início da década de 2000. Após esse período, o número de pesquisas e publicações com o mesmo propósito tem aumentado, mas com raros ou escassos estudos na espécie equina. Nesse sentindo, o objetivo desse trabalho foi avaliar o potencial in vitro da transdiferenciação neural das CTMs provenientes da MO de equinos utilizando-se dois protocolos: P1 (forksolin e ácido retinóico) e P2 (2-βmecarptoetanol). Após a confirmação das linhagens mesenquimais, pela positividade para o marcador CD90 (X=97,94%), negatividade para o marcador CD34 e resposta positiva a diferenciação osteogênica, as CTMs foram submetidas a transdiferenciação neural (P1 e P2) para avaliação morfológica e expressão dos marcadores neurais GFAP e β3 tubulina por citometria de fluxo. Os resultados revelaram mudanças morfológicas em graus variados entre os protocolos testados. No protocolo 1, vinte quatro horas após a incubação com o meio de diferenciação neural, grande proporção de células (>80%) apresentaram morfologia semelhante a células neurais, caracterizadas por retração do corpo celular e grande número de projeções protoplasmáticas (filopodia). Por outro lado, de forma comparativa, já nos primeiros 30 minutos após a exposição ao antioxidante β-mercaptoetanol (P2) as CTMs apresentaram rápida mudança morfológica caracterizada principalmente por retração do corpo celular e menor número de projeções protoplasmáticas. Também ficou evidenciado com o uso deste protocolo, menor aderência das células após tempo de exposição ao meio de diferenciação, quando comparado ao P1. Com relação a análise imunofenotípica foi observado uma maior (P<0,001) expressão dos marcadores GFAP e β3 tubulina ao término do P2 quando comparado ao P1. A habilidade das CTMs em gerar tipos celulares relacionados a linhagem neural é complexa e multifatorial, dependendo não só dos agentes indutores, mas também do ambiente no qual estas células são cultivadas. Desta forma um maior número de estudos é necessário para o melhor entendimento do processo de transdiferenciação neural a partir de CTMs de equinos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vision affords us with the ability to consciously see, and use this information in our behavior. While research has produced a detailed account of the function of the visual system, the neural processes that underlie conscious vision are still debated. One of the aims of the present thesis was to examine the time-course of the neuroelectrical processes that correlate with conscious vision. The second aim was to study the neural basis of unconscious vision, that is, situations where a stimulus that is not consciously perceived nevertheless influences behavior. According to current prevalent models of conscious vision, the activation of visual cortical areas is not, as such, sufficient for consciousness to emerge, although it might be sufficient for unconscious vision. Conscious vision is assumed to require reciprocal communication between cortical areas, but views differ substantially on the extent of this recurrent communication. Visual consciousness has been proposed to emerge from recurrent neural interactions within the visual system, while other models claim that more widespread cortical activation is needed for consciousness. Studies I-III compared models of conscious vision by studying event-related potentials (ERP). ERPs represent the brain’s average electrical response to stimulation. The results support the model that associates conscious vision with activity localized in the ventral visual cortex. The timing of this activity corresponds to an intermediate stage in visual processing. Earlier stages of visual processing may influence what becomes conscious, although these processes do not directly enable visual consciousness. Late processing stages, when more widespread cortical areas are activated, reflect the access to and manipulation of contents of consciousness. Studies IV and V concentrated on unconscious vision. By using transcranial magnetic stimulation (TMS) we show that when early visual cortical processing is disturbed so that subjects fail to consciously perceive visual stimuli, they may nevertheless guess (above chance-level) the location where the visual stimuli were presented. However, the results also suggest that in a similar situation, early visual cortex is necessary for both conscious and unconscious perception of chromatic information (i.e. color). Chromatic information that remains unconscious may influence behavioral responses when activity in visual cortex is not disturbed by TMS. Our results support the view that early stimulus-driven (feedforward) activation may be sufficient for unconscious processing. In conclusion, the results of this thesis support the view that conscious vision is enabled by a series of processing stages. The processes that most closely correlate with conscious vision take place in the ventral visual cortex ~200 ms after stimulus presentation, although preceding time-periods and contributions from other cortical areas such as the parietal cortex are also indispensable. Unconscious vision relies on intact early visual activation, although the location of visual stimulus may be unconsciously resolved even when activity in the early visual cortex is interfered with.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Avian pathogenic Escherichia coli (APEC) is responsible for various pathological processes in birds and is considered as one of the principal causes of morbidity and mortality, associated with economic losses to the poultry industry. The objective of this study was to demonstrate that it is possible to predict antimicrobial resistance of 256 samples (APEC) using 38 different genes responsible for virulence factors, through a computer program of artificial neural networks (ANNs). A second target was to find the relationship between (PI) pathogenicity index and resistance to 14 antibiotics by statistical analysis. The results showed that the RNAs were able to make the correct classification of the behavior of APEC samples with a range from 74.22 to 98.44%, and make it possible to predict antimicrobial resistance. The statistical analysis to assess the relationship between the pathogenic index (PI) and resistance against 14 antibiotics showed that these variables are independent, i.e. peaks in PI can happen without changing the antimicrobial resistance, or the opposite, changing the antimicrobial resistance without a change in PI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-linear functional representation of the aerodynamic response provides a convenient mathematical model for motion-induced unsteady transonic aerodynamic loads response, that accounts for both complex non-linearities and time-history effects. A recent development, based on functional approximation theory, has established a novel functional form; namely, the multi-layer functional. For a large class of non-linear dynamic systems, such multi-layer functional representations can be realised via finite impulse response (FIR) neural networks. Identification of an appropriate FIR neural network model is facilitated by means of a supervised training process in which a limited sample of system input-output data sets is presented to the temporal neural network. The present work describes a procedure for the systematic identification of parameterised neural network models of motion-induced unsteady transonic aerodynamic loads response. The training process is based on a conventional genetic algorithm to optimise the network architecture, combined with a simplified random search algorithm to update weight and bias values. Application of the scheme to representative transonic aerodynamic loads response data for a bidimensional airfoil executing finite-amplitude motion in transonic flow is used to demonstrate the feasibility of the approach. The approach is shown to furnish a satisfactory generalisation property to different motion histories over a range of Mach numbers in the transonic regime.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the main problems related to the transport and manipulation of multiphase fluids concerns the existence of characteristic flow patterns and its strong influence on important operation parameters. A good example of this occurs in gas-liquid chemical reactors in which maximum efficiencies can be achieved by maintaining a finely dispersed bubbly flow to maximize the total interfacial area. Thus, the ability to automatically detect flow patterns is of crucial importance, especially for the adequate operation of multiphase systems. This work describes the application of a neural model to process the signals delivered by a direct imaging probe to produce a diagnostic of the corresponding flow pattern. The neural model is constituted of six independent neural modules, each of which trained to detect one of the main horizontal flow patterns, and a last winner-take-all layer responsible for resolving when two or more patterns are simultaneously detected. Experimental signals representing different bubbly, intermittent, annular and stratified flow patterns were used to validate the neural model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Global illumination algorithms are at the center of realistic image synthesis and account for non-trivial light transport and occlusion within scenes, such as indirect illumination, ambient occlusion, and environment lighting. Their computationally most difficult part is determining light source visibility at each visible scene point. Height fields, on the other hand, constitute an important special case of geometry and are mainly used to describe certain types of objects such as terrains and to map detailed geometry onto object surfaces. The geometry of an entire scene can also be approximated by treating the distance values of its camera projection as a screen-space height field. In order to shadow height fields from environment lights a horizon map is usually used to occlude incident light. We reduce the per-receiver time complexity of generating the horizon map on N N height fields from O(N) of the previous work to O(1) by using an algorithm that incrementally traverses the height field and reuses the information already gathered along the path of traversal. We also propose an accurate method to integrate the incident light within the limits given by the horizon map. Indirect illumination in height fields requires information about which other points are visible to each height field point. We present an algorithm to determine this intervisibility in a time complexity that matches the space complexity of the produced visibility information, which is in contrast to previous methods which scale in the height field size. As a result the amount of computation is reduced by two orders of magnitude in common use cases. Screen-space ambient obscurance methods approximate ambient obscurance from the depth bu er geometry and have been widely adopted by contemporary real-time applications. They work by sampling the screen-space geometry around each receiver point but have been previously limited to near- field effects because sampling a large radius quickly exceeds the render time budget. We present an algorithm that reduces the quadratic per-pixel complexity of previous methods to a linear complexity by line sweeping over the depth bu er and maintaining an internal representation of the processed geometry from which occluders can be efficiently queried. Another algorithm is presented to determine ambient obscurance from the entire depth bu er at each screen pixel. The algorithm scans the depth bu er in a quick pre-pass and locates important features in it, which are then used to evaluate the ambient obscurance integral accurately. We also propose an evaluation of the integral such that results within a few percent of the ray traced screen-space reference are obtained at real-time render times.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The assembly and maintenance of the International Thermonuclear Experimental Reactor (ITER) vacuum vessel (VV) is highly challenging since the tasks performed by the robot involve welding, material handling, and machine cutting from inside the VV. The VV is made of stainless steel, which has poor machinability and tends to work harden very rapidly, and all the machining operations need to be carried out from inside of the ITER VV. A general industrial robot cannot be used due to its poor stiffness in the heavy duty machining process, and this will cause many problems, such as poor surface quality, tool damage, low accuracy. Therefore, one of the most suitable options should be a light weight mobile robot which is able to move around inside of the VV and perform different machining tasks by replacing different cutting tools. Reducing the mass of the robot manipulators offers many advantages: reduced material costs, reduced power consumption, the possibility of using smaller actuators, and a higher payload-to-robot weight ratio. Offsetting these advantages, the lighter weight robot is more flexible, which makes it more difficult to control. To achieve good machining surface quality, the tracking of the end effector must be accurate, and an accurate model for a more flexible robot must be constructed. This thesis studies the dynamics and control of a 10 degree-of-freedom (DOF) redundant hybrid robot (4-DOF serial mechanism and 6-DOF 6-UPS hexapod parallel mechanisms) hydraulically driven with flexible rods under the influence of machining forces. Firstly, the flexibility of the bodies is described using the floating frame of reference method (FFRF). A finite element model (FEM) provided the Craig-Bampton (CB) modes needed for the FFRF. A dynamic model of the system of six closed loop mechanisms was assembled using the constrained Lagrange equations and the Lagrange multiplier method. Subsequently, the reaction forces between the parallel and serial parts were used to study the dynamics of the serial robot. A PID control based on position predictions was implemented independently to control the hydraulic cylinders of the robot. Secondly, in machining, to achieve greater end effector trajectory tracking accuracy for surface quality, a robust control of the actuators for the flexible link has to be deduced. This thesis investigates the intelligent control of a hydraulically driven parallel robot part based on the dynamic model and two schemes of intelligent control for a hydraulically driven parallel mechanism based on the dynamic model: (1) a fuzzy-PID self-tuning controller composed of the conventional PID control and with fuzzy logic, and (2) adaptive neuro-fuzzy inference system-PID (ANFIS-PID) self-tuning of the gains of the PID controller, which are implemented independently to control each hydraulic cylinder of the parallel mechanism based on rod length predictions. The serial component of the hybrid robot can be analyzed using the equilibrium of reaction forces at the universal joint connections of the hexa-element. To achieve precise positional control of the end effector for maximum precision machining, the hydraulic cylinder should be controlled to hold the hexa-element. Thirdly, a finite element approach of multibody systems using the Special Euclidean group SE(3) framework is presented for a parallel mechanism with flexible piston rods under the influence of machining forces. The flexibility of the bodies is described using the nonlinear interpolation method with an exponential map. The equations of motion take the form of a differential algebraic equation on a Lie group, which is solved using a Lie group time integration scheme. The method relies on the local description of motions, so that it provides a singularity-free formulation, and no parameterization of the nodal variables needs to be introduced. The flexible slider constraint is formulated using a Lie group and used for modeling a flexible rod sliding inside a cylinder. The dynamic model of the system of six closed loop mechanisms was assembled using Hamilton’s principle and the Lagrange multiplier method. A linearized hydraulic control system based on rod length predictions was implemented independently to control the hydraulic cylinders. Consequently, the results of the simulations demonstrating the behavior of the robot machine are presented for each case study. In conclusion, this thesis studies the dynamic analysis of a special hybrid (serialparallel) robot for the above-mentioned special task involving the ITER and investigates different control algorithms that can significantly improve machining performance. These analyses and results provide valuable insight into the design and control of the parallel robot with flexible rods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this master’s thesis, wind speeds and directions were modeled with the aim of developing suitable models for hourly, daily, weekly and monthly forecasting. Artificial Neural Networks implemented in MATLAB software were used to perform the forecasts. Three main types of artificial neural network were built, namely: Feed forward neural networks, Jordan Elman neural networks and Cascade forward neural networks. Four sub models of each of these neural networks were also built, corresponding to the four forecast horizons, for both wind speeds and directions. A single neural network topology was used for each of the forecast horizons, regardless of the model type. All the models were then trained with real data of wind speeds and directions collected over a period of two years in the municipal region of Puumala in Finland. Only 70% of the data was used for training, validation and testing of the models, while the second last 15% of the data was presented to the trained models for verification. The model outputs were then compared to the last 15% of the original data, by measuring the mean square errors and sum square errors between them. Based on the results, the feed forward networks returned the lowest generalization errors for hourly, weekly and monthly forecasts of wind speeds; Jordan Elman networks returned the lowest errors when used for forecasting of daily wind speeds. Cascade forward networks gave the lowest errors when used for forecasting daily, weekly and monthly wind directions; Jordan Elman networks returned the lowest errors when used for hourly forecasting. The errors were relatively low during training of the models, but shot up upon simulation with new inputs. In addition, a combination of hyperbolic tangent transfer functions for both hidden and output layers returned better results compared to other combinations of transfer functions. In general, wind speeds were more predictable as compared to wind directions, opening up opportunities for further research into building better models for wind direction forecasting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the greatest conundrums to the contemporary science is the relation between consciousness and brain activity, and one of the specifi c questions is how neural activity can generate vivid subjective experiences. Studies focusing on visual consciousness have become essential in solving the empirical questions of consciousness. Th e main aim of this thesis is to clarify the relation between visual consciousness and the neural and electrophysiological processes of the brain. By applying electroencephalography and functional magnetic resonance image-guided transcranial magnetic stimulation (TMS), we investigated the links between conscious perception and attention, the temporal evolution of visual consciousness during stimulus processing, the causal roles of primary visual cortex (V1), visual area 2 (V2) and lateral occipital cortex (LO) in the generation of visual consciousness and also the methodological issues concerning the accuracy of targeting TMS to V1. Th e results showed that the fi rst eff ects of visual consciousness on electrophysiological responses (about 140 ms aft er the stimulus-onset) appeared earlier than the eff ects of selective attention, and also in the unattended condition, suggesting that visual consciousness and selective attention are two independent phenomena which have distinct underlying neural mechanisms. In addition, while it is well known that V1 is necessary for visual awareness, the results of the present thesis suggest that also the abutting visual area V2 is a prerequisite for conscious perception. In our studies, the activation in V2 was necessary for the conscious perception of change in contrast for a shorter period of time than in the case of more detailed conscious perception. We also found that TMS in LO suppressed the conscious perception of object shape when TMS was delivered in two distinct time windows, the latter corresponding with the timing of the ERPs related to the conscious perception of coherent object shape. Th e result supports the view that LO is crucial in conscious perception of object coherency and is likely to be directly involved in the generation of visual consciousness. Furthermore, we found that visual sensations, or phosphenes, elicited by the TMS of V1 were brighter than identically induced phosphenes arising from V2. Th ese fi ndings demonstrate that V1 contributes more to the generation of the sensation of brightness than does V2. Th e results also suggest that top-down activation from V2 to V1 is probably associated with phosphene generation. The results of the methodological study imply that when a commonly used landmark (2 cm above the inion) is used in targeting TMS to V1, the TMS-induced electric fi eld is likely to be highest in dorsal V2. When V1 was targeted according to the individual retinotopic data, the electric fi eld was highest in V1 only in half of the participants. Th is result suggests that if the objective is to study the role of V1 with TMS methodology, at least functional maps of V1 and V2 should be applied with computational model of the TMS-induced electric fi eld in V1 and V2. Finally, the results of this thesis imply that diff erent features of attention contribute diff erently to visual consciousness, and thus, the theoretical model which is built up of the relationship between visual consciousness and attention should acknowledge these diff erences. Future studies should also explore the possibility that visual consciousness consists of several processing stages, each of which have their distinct underlying neural mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The maintenance of arterial pressure at levels adequate to perfuse the tissues is a basic requirement for the constancy of the internal environment and survival. The objective of the present review was to provide information about the basic reflex mechanisms that are responsible for the moment-to-moment regulation of the cardiovascular system. We demonstrate that this control is largely provided by the action of arterial and non-arterial reflexes that detect and correct changes in arterial pressure (baroreflex), blood volume or chemical composition (mechano- and chemosensitive cardiopulmonary reflexes), and changes in blood-gas composition (chemoreceptor reflex). The importance of the integration of these cardiovascular reflexes is well understood and it is clear that processing mainly occurs in the nucleus tractus solitarii, although the mechanism is poorly understood. There are several indications that the interactions of baroreflex, chemoreflex and Bezold-Jarisch reflex inputs, and the central nervous system control the activity of autonomic preganglionic neurons through parallel afferent and efferent pathways to achieve cardiovascular homeostasis. It is surprising that so little appears in the literature about the integration of these neural reflexes in cardiovascular function. Thus, our purpose was to review the interplay between peripheral neural reflex mechanisms of arterial blood pressure and blood volume regulation in physiological and pathophysiological states. Special emphasis is placed on the experimental model of arterial hypertension induced by N-nitro-L-arginine methyl ester (L-NAME) in which the interplay of these three reflexes is demonstrable