863 resultados para multi-attribute analysis
Resumo:
Combinatorial optimization problems share an interesting property with spin glass systems in that their state spaces can exhibit ultrametric structure. We use sampling methods to analyse the error surfaces of feedforward multi-layer perceptron neural networks learning encoder problems. The third order statistics of these points of attraction are examined and found to be arranged in a highly ultrametric way. This is a unique result for a finite, continuous parameter space. The implications of this result are discussed.
Resumo:
Observational data collected in the Lake Tekapo hydro catchment of the Southern Alps in New Zealand are used to analyse the wind and temperature fields in the alpine lake basin during summertime fair weather conditions. Measurements from surface stations, pilot balloon and tethersonde soundings, Doppler sodar and an instrumented light aircraft provide evidence of multi-scale interacting wind systems, ranging from microscale slope winds to mesoscale coast-to-basin flows. Thermal forcing of the winds occurred due to differential heating as a consequence of orography and heterogeneous surface features, which is quantified by heat budget and pressure field analysis. The daytime vertical temperature structure was characterised by distinct layering. Features of particular interest are the formation of thermal internal boundary layers due to the lake-land discontinuity and the development of elevated mixed layers. The latter were generated by advective heating from the basin and valley sidewalls by slope winds and by a superimposed valley wind blowing from the basin over Lake Tekapo and up the tributary Godley Valley. Daytime heating in the basin and its tributary valleys caused the development of a strong horizontal temperature gradient between the basin atmosphere and that over the surrounding landscape, and hence the development of a mesoscale heat low over the basin. After noon, air from outside the basin started flowing over mountain saddles into the basin causing cooling in the lowest layers, whereas at ridge top height the horizontal air temperature gradient between inside and outside the basin continued to increase. In the early evening, a more massive intrusion of cold air caused rapid cooling and a transition to a rather uniform slightly stable stratification up to about 2000 m agl. The onset time of this rapid cooling varied about 1-2 h between observation sites and was probably triggered by the decay of up-slope winds inside the basin, which previously countered the intrusion of air over the surrounding ridges. The intrusion of air from outside the basin continued until about mid-night, when a northerly mountain wind from the Godley Valley became dominant. The results illustrate the extreme complexity that can be caused by the operation of thermal forcing processes at a wide range of spatial scales.
Resumo:
The isotope composition of Ph is difficult to determine accurately due to the lack of a stable normalisation ratio. Double and triple-spike addition techniques provide one solution and presently yield the most accurate measurements. A number of recent studies have claimed that improved accuracy and precision could also be achieved by multi-collector ICP-MS (MC-ICP-MS) Pb-isotope analysis using the addition of Tl of known isotope composition to Pb samples. In this paper, we verify whether the known isotope composition of Tl can be used for correction of mass discrimination of Pb with an extensive dataset for the NIST standard SRM 981, comparison of MC-ICP-MS with TIMS data, and comparison with three isochrons from different geological environments. When all our NIST SRM 981 data are normalised with one constant Tl-205/Tl-203 of 2.38869, the following averages and reproducibilities were obtained: Pb-207/Pb-206=0.91461+/-18; Pb-208/Ph-206 = 2.1674+/-7; and (PbPh)-Pb-206-Ph-204 = 16.941+/-6. These two sigma standard deviations of the mean correspond to 149, 330, and 374 ppm, respectively. Accuracies relative to triple-spike values are 149, 157, and 52 ppm, respectively, and thus well within uncertainties. The largest component of the uncertainties stems from the Ph data alone and is not caused by differential mass discrimination behaviour of Ph and Tl. In routine operation, variation of sample introduction memory and production of isobaric molecular interferences in the spectrometer's collision cell currently appear to be the ultimate limitation to better reproducibility. Comparative study of five different datasets from actual samples (bullets, international rock standards, carbonates, metamorphic minerals, and sulphide minerals) demonstrates that in most cases geological scatter of the sample exceeds the achieved analytical reproducibility. We observe good agreement between TIMS and MC-ICP-MS data for international rock standards but find that such comparison does not constitute the ultimate. test for the validity of the MC-ICP-MS technique. Two attempted isochrons resulted in geological scatter (in one case small) in excess of analytical reproducibility. However, in one case (leached Great Dyke sulphides) we obtained a true isochron (MSWD = 0.63) age of 2578.3 +/- 0.9 Ma, which is identical to and more precise than a recently published U-Pb zircon age (2579 3 Ma) for a Great Dyke websterite [Earth Planet. Sci. Lett. 180 (2000) 1-12]. Reproducibility of this age by means of an isochron we regard as a robust test of accuracy over a wide dynamic range. We show that reliable and accurate Pb-isotope data can be obtained by careful operation of second-generation MC-ICP magnetic sector mass spectrometers. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
In this paper we analyzed the adsorption of gases and vapors on graphitised thermal carbon black by using a modified DFT-lattice theory, in which we assume that the behavior of the first layer in the adsorption film is different from those of second and higher layers. The effects of various parameters on the topology of the adsorption isotherm were first investigated, and the model was then applied in the analysis of adsorption data of numerous substances on carbon black. We have found that the first layer in the adsorption film behaves differently from the second and higher layers in such a way that the adsorbate-adsorbate interaction energy in the first layer is less than that of second and higher layers, and the same is observed for the partition function. Furthermore, the adsorbate-adsorbate and adsorbate-adsorbent interaction energies obtained from the fitting are consistently lower than the corresponding values obtained from the viscosity data and calculated from the Lorentz-Berthelot rule, respectively.
Resumo:
There are several competing methods commonly used to solve energy grained master equations describing gas-phase reactive systems. When it comes to selecting an appropriate method for any particular problem, there is little guidance in the literature. In this paper we directly compare several variants of spectral and numerical integration methods from the point of view of computer time required to calculate the solution and the range of temperature and pressure conditions under which the methods are successful. The test case used in the comparison is an important reaction in combustion chemistry and incorporates reversible and irreversible bimolecular reaction steps as well as isomerizations between multiple unimolecular species. While the numerical integration of the ODE with a stiff ODE integrator is not the fastest method overall, it is the fastest method applicable to all conditions.
Resumo:
Increased professionalism in rugby has elicited rapid changes in the fitness profile of elite players. Recent research, focusing on the physiological and anthropometrical characteristics of rugby players, and the demands of competition are reviewed. The paucity of research on contemporary elite rugby players is highlighted, along with the need for standardised testing protocols. Recent data reinforce the pronounced differences in the anthropometric and physical characteristics of the forwards and backs. Forwards are typically heavier, taller, and have a greater proportion of body fat than backs. These characteristics are changing, with forwards developing greater total mass and higher muscularity. The forwards demonstrate superior absolute aerobic and anaerobic power, and Muscular strength. Results favour the backs when body mass is taken into account. The scaling of results to body mass can be problematic and future investigations should present results using power function ratios. Recommended tests for elite players include body mass and skinfolds, vertical jump, speed, and the multi-stage shuttle run. Repeat sprint testing is a possible avenue for more specific evaluation of players. During competition, high-intensity efforts are often followed by periods of incomplete recovery. The total work over the duration of a game is lower in the backs compared with the forwards; forwards spend greater time in physical contact with the opposition while the backs spend more time in free running, allowing them to cover greater distances. The intense efforts undertaken by rugby players place considerable stress on anaerobic energy sources, while the aerobic system provides energy during repeated efforts and for recovery. Training should focus on repeated brief high-intensity efforts with short rest intervals to condition players to the demands of the game. Training for the forwards should emphasise the higher work rates of the game, while extended rest periods can be provided to the backs. Players should not only be prepared for the demands of competition, but also the stress of travel and extreme environmental conditions. The greater professionalism of rugby union has increased scientific research in the sport; however, there is scope for significant refinement of investigations on the physiological demands of the game, and sports-specific testing procedures.
Resumo:
Polymers have become the reference material for high reliability and performance applications. In this work, a multi-scale approach is proposed to investigate the mechanical properties of polymeric based material under strain. To achieve a better understanding of phenomena occurring at the smaller scales, a coupling of a Finite Element Method (FEM) and Molecular Dynamics (MD) modeling in an iterative procedure was employed, enabling the prediction of the macroscopic constitutive response. As the mechanical response can be related to the local microstructure, which in turn depends on the nano-scale structure, the previous described multi-scale method computes the stress-strain relationship at every analysis point of the macro-structure by detailed modeling of the underlying micro- and meso-scale deformation phenomena. The proposed multi-scale approach can enable prediction of properties at the macroscale while taking into consideration phenomena that occur at the mesoscale, thus offering an increased potential accuracy compared to traditional methods.
Resumo:
The increasing availability of mobility data and the awareness of its importance and value have been motivating many researchers to the development of models and tools for analyzing movement data. This paper presents a brief survey of significant research works about modeling, processing and visualization of data about moving objects. We identified some key research fields that will provide better features for online analysis of movement data. As result of the literature review, we suggest a generic multi-layer architecture for the development of an online analysis processing software tool, which will be used for the definition of the future work of our team.
Resumo:
Background: Regulating mechanisms of branching morphogenesis of fetal lung rat explants have been an essential tool for molecular research. This work presents a new methodology to accurately quantify the epithelial, outer contour and peripheral airway buds of lung explants during cellular development from microscopic images. Methods: The outer contour was defined using an adaptive and multi-scale threshold algorithm whose level was automatically calculated based on an entropy maximization criterion. The inner lung epithelial was defined by a clustering procedure that groups small image regions according to the minimum description length principle and local statistical properties. Finally, the number of peripheral buds were counted as the skeleton branched ends from a skeletonized image of the lung inner epithelial. Results: The time for lung branching morphometric analysis was reduced in 98% in contrast to the manual method. Best results were obtained in the first two days of cellular development, with lesser standard deviations. Non-significant differences were found between the automatic and manual results in all culture days. Conclusions: The proposed method introduces a series of advantages related to its intuitive use and accuracy, making the technique suitable to images with different lightning characteristics and allowing a reliable comparison between different researchers.
Resumo:
Polymeric materials have become the reference material for high reliability and performance applications. However, their performance in service conditions is difficult to predict, due in large part to their inherent complex morphology, which leads to non-linear and anisotropic behavior, highly dependent on the thermomechanical environment under which it is processed. In this work, a multiscale approach is proposed to investigate the mechanical properties of polymeric-based material under strain. To achieve a better understanding of phenomena occurring at the smaller scales, the coupling of a finite element method (FEM) and molecular dynamics (MD) modeling, in an iterative procedure, was employed, enabling the prediction of the macroscopic constitutive response. As the mechanical response can be related to the local microstructure, which in turn depends on the nano-scale structure, this multiscale approach computes the stress-strain relationship at every analysis point of the macro-structure by detailed modeling of the underlying micro- and meso-scale deformation phenomena. The proposed multiscale approach can enable prediction of properties at the macroscale while taking into consideration phenomena that occur at the mesoscale, thus offering an increased potential accuracy compared to traditional methods.
Resumo:
Quantitative analysis of cine cardiac magnetic resonance (CMR) images for the assessment of global left ventricular morphology and function remains a routine task in clinical cardiology practice. To date, this process requires user interaction and therefore prolongs the examination (i.e. cost) and introduces observer variability. In this study, we sought to validate the feasibility, accuracy, and time efficiency of a novel framework for automatic quantification of left ventricular global function in a clinical setting.
Resumo:
Supply chain (SC) resilience and flexibility are important research topics receiving growing attention. However, the academic literature needs empirical studies on SC resilience capable of investigating the inter-organizational components of flexibility along different tiers. Therefore, this paper analyzes the main lack of flexibilities in three Brazilian automotive SCs that limit their resilience and therefore their capacity to better support and meet the demand changes in the marketplace. A multi-tier case study approach is adopted. Research findings identify lack of flexibilities in different tiers that inhibit the SC resilience as well as manufacturing and SC flexibilities that build SC resilience. The findings also highlight that the same SC may have the flexibility to be resilient for one of its products but not for another product, what sheds new lights on the academic literature. Finally, flexible SCs should be designed to increase SC resilience to cope with mishaps as significant demand changes.
Resumo:
A transient analysis for two full-power converter wind turbines equipped with a permanent magnet synchronous generator is studied in this article, taking into consideration, as a new contribution to earlier studies, a pitch control malfunction. The two full-power converters considered are, respectively, a two-level and a multi-level converter. Moreover, a novel control strategy based on fractional-order controllers for wind turbines is studied. Simulation results are presented; conclusions are in favor of the novel control strategy, improving the quality of the energy injected into the electric grid.
Resumo:
A energia eléctrica é um bem essencial para a maioria das sociedades. O seu fornecimento tem sido encarado como um serviço público, da responsabilidade dos governos, através de empresas monopolistas, públicas e privadas. O Mercado Ibérico de Electricidade (MIBEL) surge com o objectivo da integração e cooperação do sector eléctrico Português e Espanhol, no qual é possível negociar preços e volumes de energia. Actualmente, as entidades podem negociar através de um mercado bolsista ou num mercado de contratos bilaterais. Uma análise dos mercados de electricidade existentes mostra que estes estão longe de estarem liberalizados. As tarifas não reflectem o efeito da competitividade. Além disso, o recurso a contratos bilaterais limita frequentemente os clientes a um único fornecedor de energia eléctrica. Nos últimos anos, têm surgido uma série de ferramentas computacionais que permitem simular, parte ou a totalidade, dos mercados de electricidade. Contudo, apesar das suas potencialidades, muitos simuladores carecem de flexibilidade e generalidade. Nesta perspectiva, esta dissertação tem como principal objectivo o desenvolvimento de um simulador de mercados de energia eléctrica que possibilite lidar com as dificuldades inerentes a este novo modelo de mercado, recorrendo a agentes computacionais autónomos. A dissertação descreve o desenho e a implementação de um simulador simplificado para negociação de contratos bilaterais em mercados de energia, com particular incidência para o desenho das estratégias a utilizar pelas partes negociais. Além disso, efectua-se a descrição de um caso prático, com dados do MIBEL. Descrevem-se também várias simulações computacionais, envolvendo retalhistas e consumidores de energia eléctrica, que utilizam diferentes estratégias negociais. Efectua-se a análise detalhada dos resultados obtidos. De forma sucinta, os resultados permitem concluir que as melhores estratégias para cada entidade, no caso prático estudado, são: a estratégia de concessões fixas, para o retalhista, e a estratégia de concessões baseada no volume de energia, para o consumidor.
Resumo:
A liberalização do sector eléctrico, e a consequente criação de mercados de energia eléctrica regulados e liberalizados, mudou a forma de comercialização da electricidade. Em particular, permitiu a entrada de empresas nas actividades de produção e comercialização, aumentando a competitividade e assegurando a liberdade de escolha dos consumidores, para decidir o fornecedor de electricidade que pretenderem. A competitividade no sector eléctrico aumentou a necessidade das empresas que o integram a proporem preços mais aliciantes (do que os preços propostos pelos concorrentes), e contribuiu para o desenvolvimento de estratégias de mercado que atraiam mais clientes e aumentem a eficiência energética e económica. A comercialização de electricidade pode ser realizada em mercados organizados ou através de contratação directa entre comercializadores e consumidores, utilizando os contratos bilaterais físicos. Estes contratos permitem a negociação dos preços de electricidade entre os comercializadores e os consumidores. Actualmente, existem várias ferramentas computacionais para fazer a simulação de mercados de energia eléctrica. Os simuladores existentes permitem simulações de transacções em bolsas de energia, negociação de preços através de contratos bilaterais, e análises técnicas a redes de energia. No entanto, devido à complexidade dos sistemas eléctricos, esses simuladores apresentam algumas limitações. Esta dissertação apresenta um simulador de contratos bilaterais em mercados de energia eléctrica, sendo dando ênfase a um protocolo de ofertas alternadas, desenvolvido através da tecnologia multi-agente. Em termos sucintos, um protocolo de ofertas alternadas é um protocolo de interacção que define as regras da negociação entre um agente vendedor (por exemplo um retalhista) e um agente comprador (por exemplo um consumidor final). Aplicou-se o simulador na resolução de um caso prático, baseado em dados reais. Os resultados obtidos permitem concluir que o simulador, apesar de simplificado, pode ser uma ferramenta importante na ajuda à tomada de decisões inerentes à negociação de contratos bilaterais em mercados de electricidade.