985 resultados para momentum dissipation
Resumo:
In this work, we present a systematic approach to the representation of modelling assumptions. Modelling assumptions form the fundamental basis for the mathematical description of a process system. These assumptions can be translated into either additional mathematical relationships or constraints between model variables, equations, balance volumes or parameters. In order to analyse the effect of modelling assumptions in a formal, rigorous way, a syntax of modelling assumptions has been defined. The smallest indivisible syntactical element, the so called assumption atom has been identified as a triplet. With this syntax a modelling assumption can be described as an elementary assumption, i.e. an assumption consisting of only an assumption atom or a composite assumption consisting of a conjunction of elementary assumptions. The above syntax of modelling assumptions enables us to represent modelling assumptions as transformations acting on the set of model equations. The notion of syntactical correctness and semantical consistency of sets of modelling assumptions is defined and necessary conditions for checking them are given. These transformations can be used in several ways and their implications can be analysed by formal methods. The modelling assumptions define model hierarchies. That is, a series of model families each belonging to a particular equivalence class. These model equivalence classes can be related to primal assumptions regarding the definition of mass, energy and momentum balance volumes and to secondary and tiertinary assumptions regarding the presence or absence and the form of mechanisms within the system. Within equivalence classes, there are many model members, these being related to algebraic model transformations for the particular model. We show how these model hierarchies are driven by the underlying assumption structure and indicate some implications on system dynamics and complexity issues. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
We consider a possible technique for mode locking an atom laser, based on the generation of a dark soliton in a ring-shaped Bose-Einstein condensate, with repulsive atomic interactions. The soliton is a kink, with angular momentum per particle equal to (h) over bar /2. It emerges naturally when the condensate is stirred at the soliton velocity and cleansed with a periodic out coupler. The result is a replicating coherent field inside the atom laser, stabilized by topology. We give a numerical demonstration of the generation and stabilization of the soliton.
Resumo:
We report the observation of multiple bifurcations in a nonlinear Hamiltionian system: laser-cooled atoms in a standing wave with single-frequency intensity modulation. We provide clear evidence of the occurrence of bifurcations by analyzing the atomic momentum distributions.
Resumo:
We investigate the center-of-mass motion of cold atoms in a standing amplitude modulated laser field. We use a simple model to explain the momentum distribution of the atoms after any distinct number of modulation cycles. The atoms starting near a classical phase-space resonance move slower than we would expect classically. We explain this by showing that for a wave packet on the classical resonances we can replace the complicated dynamics in the quantum Liouville equation in phase space by its classical dynamics with a modified potential.
Resumo:
We report on a proof of principle demonstration of an optically driven micromachine element. Optical angular momentum is transferred from a circularly polarized laser beam to a birefringent particle confined in an optical tweezers trap. The optical torque causes the particle to spin at up to 350 Hz, and this torque is harnessed to drive an optically trapped microfabricated structure. We describe a photolithographic method for producing the microstructures and show how a light driven motor could be used in a micromachine system. (C) 2001 American Institute of Physics.
Resumo:
Traffic and tillage effects on runoff and crop performance on a heavy clay soil were investigated over a period of 4 years. Tillage treatments and the cropping program were representative of broadacre grain production practice in northern Australia, and a split-plot design used to isolate traffic effects. Treatments subject to zero, minimum, and stubble mulch tillage each comprised pairs of 90-m 2 plots, from which runoff was recorded. A 3-m-wide controlled traffic system allowed one of each pair to be maintained as a non-wheeled plot, while the total surface area of the other received a single annual wheeling treatment from a working 100-kW tractor. Rainfall/runoff hydrographs demonstrate that wheeling produced a large and consistent increase in runoff, whereas tillage produced a smaller increase. Treatment effects were greater on dry soil, but were still maintained in large and intense rainfall events on wet soil. Mean annual runoff from wheeled plots was 63 mm (44%) greater than that from controlled traffic plots, whereas runoff from stubble mulch tillage plots was 38 mm (24%) greater than that from zero tillage plots. Traffic and tillage effects appeared to be cumulative, so the mean annual runoff from wheeled stubble mulch tilled plots, representing conventional cropping practice, was more than 100 mm greater than that from controlled traffic zero tilled plots, representing best practice. This increased infiltration was reflected in an increased yield of 16% compared with wheeled stubble mulch. Minimum tilled plots demonstrated a characteristic midway between that of zero and stubble mulch tillage. The results confirm that unnecessary energy dissipation in the soil during the traction process that normally accompanies tillage has a major negative effect on infiltration and crop productivity. Controlled traffic farming systems appear to be the only practicable solution to this problem.
Resumo:
A new parafermionic algebra associated with the homogeneous space A(2)((2))/U(1) and its corresponding Z-algebra have been recently proposed. In this paper, we give a free boson representation of the A(2)((2)) parafermion algebra in terms of seven free fields. Free field realizations of the parafermionic energy-momentum tensor and screening currents are also obtained. A new algebraic structure is discovered, which contains a W-algebra type primary field with spin two. (C) 2002 Published by Elsevier Science B.V.
Resumo:
Free field and twisted parafermionic representations of twisted su(3)(k)((2)) current algebra are obtained. The corresponding twisted Sugawara energy-momentum tensor is given in terms of three (beta, gamma) pairs and two scalar fields and also in terms of twisted parafermionic currents and one scalar field. Two screening currents of the first kind are presented in terms of the free fields.
Resumo:
We show that by making conditional measurements on the Einstein-Podolsky-Rosen (EPR) squeezed vacuum [T. Opatrny, G. Kurizki, and D.-G. Welsch, Phys. Rev. A 61, 032302 (2000)], one can improve the efficacy of teleportation for both the position-difference, momentum-sum, and number-difference, phase-sum continuous variable teleportation protocols. We investigate the relative abilities of the standard and conditional EPR states, and show that by conditioning we can improve the fidelity of teleportation of coherent states from below to above the (F) over bar =2/3 boundary, thereby achieving unambiguously quantum teleportation.
Resumo:
An efficient Lanczos subspace method has been devised for calculating state-to-state reaction probabilities. The method recasts the time-independent wave packet Lippmann-Schwinger equation [Kouri , Chem. Phys. Lett. 203, 166 (1993)] inside a tridiagonal (Lanczos) representation in which action of the causal Green's operator is affected easily with a QR algorithm. The method is designed to yield all state-to-state reaction probabilities from a given reactant-channel wave packet using a single Lanczos subspace; the spectral properties of the tridiagonal Hamiltonian allow calculations to be undertaken at arbitrary energies within the spectral range of the initial wave packet. The method is applied to a H+O-2 system (J=0), and the results indicate the approach is accurate and stable. (C) 2002 American Institute of Physics.
Resumo:
In this paper we explore the relative performance of two recently developed wave packet methodologies for reactive scattering, namely the real wave packet Chebyshev domain propagation of Gray and Balint-Kurti [J. Chem. Phys. 108, 950 (1998)] and the Lanczos subspace wave packet approach of Smith [J. Chem. Phys. 116, 2354 (2002); Chem. Phys. Lett. 336, 149 (2001)]. In the former method, a modified Schrodinger equation is employed to propagate the real part of the wave packet via the well-known Chebyshev iteration. While the time-dependent wave packet from the modified Schrodinger equation is different from that obtained using the standard Schrodinger equation, time-to-energy Fourier transformation yields wave functions which differ only trivially by normalization. In the Lanczos subspace approach the linear system of equations defining the action of the Green operator may be solved via either time-dependent or time-independent methods, both of which are extremely efficient due to the simple tridiagonal structure of the Hamiltonian in the Lanczos representation. The two different wave packet methods are applied to three dimensional reactive scattering of H+O-2 (total J=0). State-to-state reaction probabilities, product state distributions, as well as initial-state-resolved cumulative reaction probabilities are examined. (C) 2002 American Institute of Physics.
Resumo:
Complex chemical reactions in the gas phase can be decomposed into a network of elementary (e.g., unimolecular and bimolecular) steps which may involve multiple reactant channels, multiple intermediates, and multiple products. The modeling of such reactions involves describing the molecular species and their transformation by reaction at a detailed level. Here we focus on a detailed modeling of the C(P-3)+allene (C3H4) reaction, for which molecular beam experiments and theoretical calculations have previously been performed. In our previous calculations, product branching ratios for a nonrotating isomerizing unimolecular system were predicted. We extend the previous calculations to predict absolute unimolecular rate coefficients and branching ratios using microcanonical variational transition state theory (mu-VTST) with full energy and angular momentum resolution. Our calculation of the initial capture rate is facilitated by systematic ab initio potential energy surface calculations that describe the interaction potential between carbon and allene as a function of the angle of attack. Furthermore, the chemical kinetic scheme is enhanced to explicitly treat the entrance channels in terms of a predicted overall input flux and also to allow for the possibility of redissociation via the entrance channels. Thus, the computation of total bimolecular reaction rates and partial capture rates is now possible. (C) 2002 American Institute of Physics.
Resumo:
Measurements of mean and fluctuating velocity and temperature and their self- and cross-products to the third-order are presented for a heated axisymmetric air jet. Froude numbers in the range of 3500 13,190, Reynolds numbers in the range of 3470-8500 and non-dimensional streamwise distances. X*, from 0.27 to 1.98 are covered by the data. It was found that turbulence intensity decreases for the heated jet in the region between the inertia dominated and the buoyancy dominated regions which is contrary to findings with helium jets mixing with ambient air to produce density fluctuations. The effects of heating on the turbulent kinetic energy budget and the temperature variance budget show small differences for the inertia dominated region and the intermediate region which help to explain the transition process to the far field plume region. Constants are evaluated for the isotropic eddy diffusivity and generalised gradient hypothesis models as well as the scalar variance model. No significant effect of heating on the dissipation time-scale ratio was found. A novel wire array with an inclined cold wire was used. Measurements obtained with this probe are found to lead to asymmetries in some of the higher-order products. Further investigation suggested that the asymmetries are attributable to an as yet unreported interference effect produced by the leading prong of the inclined temperature wire, The effect may also have implications for inclined velocity wires which contain a temperature component when used in heated flows. (C) 2002 Elsevier Science Inc. All rights reserved.
Resumo:
The flow field and the energy transport near thermoacoustic couples are simulated using a 2D full Navier-Stokes solver. The thermoacoustic couple plate is maintained at a constant temperature; plate lengths, which are short and long compared with the particle displacement lengths of the acoustic standing waves, are tested. Also investigated are the effects of plate spacing and the amplitude of the standing wave. Results are examined in the form of energy vectors, particle paths, and overall entropy generation rates. These show that a net heat-pumping effect appears only near the edges of thermoacoustic couple plates, within about a particle displacement distance from the ends. A heat-pumping effect can be seen even on the shortest plates tested when the plate spacing exceeds the thermal penetration depth. It is observed that energy dissipation near the plate increases quadratically as the plate spacing is reduced. The results also indicate that there may be a larger scale vortical motion outside the plates which disappears as the plate spacing is reduced. (C) 2002 Acoustical Society of America.
Resumo:
It was previously published by the authors that granules can either coalesce through Type I (when granules coalesce by viscous dissipation in the surface liquid layer before their surfaces touch) or Type II (when granules are slowed to a halt during rebound, after their surfaces have made contact) (AIChE J. 46 (3) (2000) 529). Based on this coalescence mechanism, a new coalescence kernel for population balance modelling of granule growth is presented. The kernel is constant such that only collisions satisfying the conditions for one of the two coalescence types are successful. One constant rate is assigned to each type of coalescence and zero is for the case of rebound. As the conditions for Types I and II coalescence are dependent on granule and binder properties, the coalescence kernel is thus physically based. Simulation results of a variety of binder and granule materials show good agreement with experimental data. (C) 2002 Elsevier Science Ltd. All rights reserved.