946 resultados para molybdate-binding protein


Relevância:

90.00% 90.00%

Publicador:

Resumo:

FUS/TLS (fused in sarcoma/translocated in liposarcoma) protein, a ubiquitously expressed and highly conserved RNA binding protein, has been linked to a variety of cellular processes from mRNA processing to DNA repair. However, the precise function of FUS is not well understood. Recently, mutations in the FUS gene have been identified in familial and sporadic patients of Amyotrophic Lateral Sclerosis, a fatal neurodegenerative disorder characterized by dysfunction and death of motor neurons. Based on the observation that some mutations in the FUS gene induce cytoplasmic accumulation of FUS aggregates, we decided to explore a loss-of-function situation (i.e. inhibition of FUS’ nuclear function) to unravel the role of this protein. To this purpose, we have generated a SH-SY5Y human neuroblastoma cell line which expresses a doxycycline induced shRNA targeting FUS that efficiently depletes the protein. In order to characterize this cell line, we have characterized the poly(A) fraction by RNA deep sequencing. Preliminary results show that FUS depletion affects both mRNA expression and alternative splicing. Upon FUS depletion 330 genes are downregulated and 81 are upregulated. We also found that 395 splicing isoforms were downregulated, while 426 were upregulated. Currently, we are focusing our attention on the pathways which are mostly affected by FUS depletion. In addition, we are currently characterizing how FUS depletion affects cell proliferation and survival. We find that the lack of FUS impairs cell proliferation but does not induce apoptosis. Finally, since MEFs and B-lymphocytes derived from FUS knockdown mice display major sensitivity to ionizing radiation and chromosomal aberrations [1,2], we are exploring the effects of DNA damage in FUS-depleted cells by monitoring important components of DNA Damage Response (DDR). Taken together, these studies may contribute to our knowledge of the role of FUS in these cellular processes and will allow us to draw a clearer picture of mechanisms of neurodegenerative diseases.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Measurement of total urinary proteins in individuals that tested positive by urinary dipstick is a typical method for assessing the presence of potentially serious renal disorders. In the absence of such overt proteinuria, however, measurement of specific urinary proteins may be useful in the diagnosis of nephropathies and may provide greater insight into the pathogenesis. The urine of 28 dogs (16 with renal disease and 12 healthy) was evaluated to determine whether specific low-molecular-weight proteins or the pattern of protein excretion could also be used as a marker of tubular dysfunction in dogs. Specific proteins were assessed by immunological methods, whereas protein profiles were determined by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (MS). In particular, changes in the excretion of retinol-binding protein (RBP) and Tamm-Horsfall protein (THP) appear to be of clinical relevance in the diagnosis of canine kidney diseases. The pattern of urinary protein and peptides revealed specific changes in abundance in dogs with renal disease at molecular masses (kD) of 11.58, 12.41, 12.60, 14.58, 20.95 (RBP), 27.85, and 65.69 (albumin). In conclusion, comparable proteins as in humans might be used as urinary markers for proximal (RBP) and distal (THP) tubular dysfunction in dogs. Surface-enhanced laser desorption/ionization time-of-flight MS is a promising tool for the study of kidney physiology and pathophysiology and might aid in the discovery of new biomarkers of renal disease.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The roles played by many ncRNAs remain largely unknown. Similarly, relatively little is known about the RNA binding proteins involved in processing ncRNA. Identification of new RNA/RNA binding protein (RBP) interactions may pave the way to gain a better understanding of the complex events occurring within cells during gene expression and ncRNA biogenesis. The development of chemical tools for the isolation of RBPs is of paramount importance. In this context, we report on the synthesis of the uridine phosphoramidite U Dz that bears a diazirine moiety on the nucleobase. RNA probes containing U Dz units were irradiated in the presence of single-stranded DNA binding protein (SSB), which is also known to bind ssRNAs, and shown to efficiently (15% yield) and selectively cross-link to the protein. The corresponding diazirine-modified uridine triphosphate U DzTP was synthesized and its capacity to act as a substrate for the T7 RNA polymerase was tested in transcription assays. U DzTP was accepted with a maximum yield of 38% for a 26mer RNA containing a single incorporation and 28% yield for triple consecutive incorporations. Thus, this uridine analogue represents a convenient biochemical tool for the identification of RNA binding proteins and unraveling the role and function played by ncRNAs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The hemagglutinin (H) gene of canine distemper virus (CDV) encodes the receptor-binding protein. This protein, together with the fusion (F) protein, is pivotal for infectivity since it contributes to the fusion of the viral envelope with the host cell membrane. Of the two receptors currently known for CDV (nectin-4 and the signaling lymphocyte activation molecule [SLAM]), SLAM is considered the most relevant for host susceptibility. To investigate how evolution might have impacted the host-CDV interaction, we examined the functional properties of a series of missense single nucleotide polymorphisms (SNPs) naturally accumulating within the H-gene sequences during the transition between two distinct but related strains. The two strains, a wild-type strain and a consensus strain, were part of a single continental outbreak in European wildlife and occurred in distinct geographical areas 2 years apart. The deduced amino acid sequence of the two H genes differed at 5 residues. A panel of mutants carrying all the combinations of the SNPs was obtained by site-directed mutagenesis. The selected mutant, wild type, and consensus H proteins were functionally evaluated according to their surface expression, SLAM binding, fusion protein interaction, and cell fusion efficiencies. The results highlight that the most detrimental functional effects are associated with specific sets of SNPs. Strikingly, an efficient compensational system driven by additional SNPs appears to come into play, virtually neutralizing the negative functional effects. This system seems to contribute to the maintenance of the tightly regulated function of the H-gene-encoded attachment protein. Importance: To investigate how evolution might have impacted the host-canine distemper virus (CDV) interaction, we examined the functional properties of naturally occurring single nucleotide polymorphisms (SNPs) in the hemagglutinin gene of two related but distinct strains of CDV. The hemagglutinin gene encodes the attachment protein, which is pivotal for infection. Our results show that few SNPs have a relevant detrimental impact and they generally appear in specific combinations (molecular signatures). These drastic negative changes are neutralized by compensatory mutations, which contribute to maintenance of an overall constant bioactivity of the attachment protein. This compensational mechanism might reflect the reaction of the CDV machinery to the changes occurring in the virus following antigenic variations critical for virulence.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The 3' ends of animal replication-dependent histone mRNAs are formed by endonucleolytic cleavage of the primary transcripts downstream of a highly conserved RNA hairpin. The hairpin-binding protein (HBP) binds to this RNA element and is involved in histone RNA 3' processing. A minimal RNA-binding domain (RBD) of approximately 73 amino acids that has no similarity with other known RNA-binding motifs was identified in human HBP [Wang Z-F et al., Genes & Dev, 1996, 10:3028-3040]. The primary sequence identity between human and Caenorhabditis elegans RBDs is 55% compared to 38% for the full-length proteins. We analyzed whether differences between C. elegans and human HBP and hairpins are reflected in the specificity of RNA binding. The C. elegans HBP and its RBD recognize only their cognate RNA hairpins, whereas the human HBP or RBD can bind both the mammalian and the C. elegans hairpins. This selectivity of C. elegans HBP is mostly mediated by the first nucleotide in the loop, which is C in C. elegans and U in all other metazoans. By converting amino acids in the human RBD to the corresponding C. elegans residues at places where the latter deviates from the consensus, we could identify two amino acid segments that contribute to selectivity for the first nucleotide of the hairpin loop.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Chlorophyll (chl) breakdown during senescence is an integral part of plant development and leads to the accumulation of colorless catabolites. The loss of green pigment is due to an oxygenolytic opening of the porphyrin macrocycle of pheophorbide (pheide) a followed by a reduction to yield a fluorescent chl catabolite. This step is comprised of the interaction of two enzymes, pheide a oxygenase (PaO) and red chl catabolite reductase. PaO activity is found only during senescence, hence PaO seems to be a key regulator of chl catabolism. Whereas red chl catabolite reductase has been cloned, the nature of PaO has remained elusive. Here we report on the identification of the PaO gene of Arabidopsis thaliana (AtPaO). AtPaO is a Rieske-type iron–sulfur cluster-containing enzyme that is identical to Arabidopsis accelerated cell death 1 and homologous to lethal leaf spot 1 (LLS1) of maize. Biochemical properties of recombinant AtPaO were identical to PaO isolated from a natural source. Production of fluorescent chl catabolite-1 required ferredoxin as an electron source and both substrates, pheide a and molecular oxygen. By using a maize lls1 mutant, the in vivo function of PaO, i.e., degradation of pheide a during senescence, could be confirmed. Thus, lls1 leaves stayed green during dark incubation and accumulated pheide a that caused a light-dependent lesion mimic phenotype. Whereas proteins were degraded similarly in wild type and lls1, a chl-binding protein was selectively retained in the mutant. PaO expression correlated positively with senescence, but the enzyme appeared to be post-translationally regulated as well.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Raf Kinase Inhibitor Protein (RKIP) has been identified as a phosphatidylethanolamine-binding protein capable of inhibiting Raf-1 kinase, an enzyme significant in cell proliferation and cancer development. When properly functioning, RKIP can mediate the expression of Raf-1 kinase and help prevent uncontrolled cell division. RKIP also has suggested, but unclear, roles in spindle fiber formation during mitosis, regulation of apoptosis, and cell motility. The Fenteany laboratory in the Chemistry Department identified a new small molecule, named Locostatin, as a cell migration inhibitor in mammalian cells, with RKIP as its primary molecular target. Dictyostelium discoideum possess two RKIP proteins, RKIP-A and RKIP-B. In order to begin to study the function of RKIP in D. discoideum and its role in cell motility, I created a mutant cell line which lacks a functional RKIP-A gene. In this paper, we show that removal of RKIP-A does not affect vegetative motility, but impairs chemotaxis and development in the presence of drug. Interestingly, RKIP-A knockout mutants appear more resistant to drug effects on vegetative motility than wild-type cells. More research is needed to reconcile these seemingly contrasting results, and to better develop a model for RKIP-A’s role in cell motility.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The double-stranded RNA (dsRNA) activated protein kinase, PKR, is one of the several enzymes induced by interferons and a key molecule mediating the antiviral effects of interferons. PKR contain an N-terminal, double-stranded RNA binding domain (dsRBD), which has two tandem copies of the motifs (dsRBM I and dsRBM II). Upon binding to viral dsRNA, PKR is activated via autophosphorylation. Activated PKR has several substrates; one of the examples is eukaryotic translation initiation factor 2 (eIF2a). The phosphorylation of eIF2a leads to the termination of cell growth by inhibiting protein synthesis in response to viral infection. The objective of this project was to characterize the dsRBM I and define the dsRNA binding using biophysical methods. First, the dsRBM I gene was cloned from a pET-28b to a pET-11a expression plasmid. N-terminal poly-histidine tags on pET-28b are for affinity purification; however, these tags can alter the structure and function of proteins, thus the gene of dsRBM I was transferred into the plasmid without tags (pET-11a) and expressed as a native protein. The dsRBM I was transformed into and expressed by Rosetta DE3plyS expression cells. Purification was done by FPLC using a Sepharose IEX ion exchange followed by Heparin affinity column; yielding pure protein was assayed by PAGE. Analytical Ultracentrifugation, Sedimentation Velocity, was used to characterize free solution association state and hydrodynamic properties of the protein. The slight decrease in S-value with concentration is due to the hydrodynamic non-ideality. No self association was observed. The obtained molecule weight was 10,079 Da. The calculated sedimentation constant at zero concentration at 20°C in water was 1.23 and its friction coefficient was 3.575 ´ 10-8. The frictional ratio of sphere and dsRBM I became 1.30. Therefore, dsRBM I must be non-globular and more asymmetric shape. Isolated dsRBM I exhibits the same tertiary fold as compared to context in the full domain but it exhibited weaker binding affinity than full domain to a 20 bp dsRNA. However, when the conditions allowed for its saturation, dsRBM I to 20 bp dsRNA has similar stoichiometry as full dsRBD.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Disruption of the mechanisms that regulate cell-cycle checkpoints, DNA repair, and apoptosis results in genomic instability and often leads to the development of cancer. In response to double stranded breaks (DSBs) as induced by ionizing radiation (IR), generated during DNA replication, or through immunoglobulin heavy chain (IgH) rearrangements in T and B cells of lymphoid origin, the protein kinases ATM and ATR are central players that activate signaling pathways leading to DSB repair. p53 binding protein 1 (53BP1) participates in the repair of DNA double stranded breaks (DSBs) where it is recruited to or near sites of DNA damage. In addition to its well established role in DSB repair, multiple lines of evidence implicate 53BP1 in transcription which stem from its initial discovery as a p53 binding protein in a yeast two-hybrid screen. However, the mechanisms behind the role of 53BP1 in these processes are not well understood. ^ 53BP1 possesses several motifs that are likely important for its role in DSB repair including two BRCA1 C-terminal repeats, tandem Tudor domains, and a variety of phosphorylation sites. In addition to these motifs, we identified a glycine and arginine rich region (GAR) upstream of the Tudor domains, a sequence that is oftentimes serves as a site for protein arginine methylation. The focus of this project was to characterize the methylation of 53BP1 and to evaluate how methylation influenced the role of 53BP1 as a tumor suppressor. ^ Using a variety of biochemical techniques, we demonstrated that 53BP1 is methylated by the PRMT1 methyltransferase in vivo. Moreover, GAR methylation occurs on arginine residues in an asymmetric manner. We further show that sequences upstream of the Tudor domains that do not include the GAR stretch are sufficient for 53BP1 oligomerization in vivo. While investigating the role of arginine methylation in 53BP1 function, we discovered that 53BP1 associates with proteins of the general transcription apparatus as well as to other factors implicated in coordinating transcription with chromatin function. Collectively, these data support a role for 53BP1 in regulating transcription and provide insight into the possible mechanisms by which this occurs. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A previous study in our lab has shown that the transforming neu oncogene ($neu\sp\*$) was able to initiate signals that lead to repression of the neu promoter activity. Further deletion mapping of the neu promoter identified that the GTG element (GGTGGGGGGG), located between $-$243 and $-$234 relative to the translation initiation codon, mediates such a repression effect. I have characterized the four major protein complexes that interact with this GTG element. In situ UV-crosslinking indicated that each complex contains proteins of different molecular weights. The slowest migrating complex (S) contain Sp1 or Sp1-related proteins, as indicated by the data that both have similar molecular weights, similar properties in two affinity chromatographies, and both are antigenically related in gel shift analysis. Methylation protection and interference experiments demonstrated these complexes bind to overlapping regions of the GTG element. Mutations within the GTG element that either abrogate or enhance complex S binding conferred on the neu promoter with lower activity, indicating that positive factors other than Sp1 family proteins also contribute to neu promoter activity. A mutated version (mutant 4) of the GTG element, which binds mainly the fastest migrating complex that contains a very small protein of 26-kDa, can repress transcription when fused to a heterologous promoter. Further deletion and mutation studies suggested that this GTG mutant and its binding protein(s) may cooperate with some DNA element within a heterologous promoter to lock the basal transcription machinery; such a repressor might also repress neu transcription by interfering with the DNA binding of other transactivators. Our results suggest that both positive and negative trans-acting factors converge their binding sites on the GTG element and confer combinatorial control on the neu gene expression. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mycobacterium tuberculosis, the causative agent of tuberculosis, is a facultative intracellular pathogen that uses the host mononuclear phagocyte as a niche for survival and replication during infection. Complement component C3 has previously been shown to enhance the binding of M. tuberculosis to mononuclear phagocytes. Using a C3 ligand affinity blot protocol, we identified a 30 kDa C3-binding protein in M. tuberculosis as heparin-binding hemagglutinin (HbhA). HbhA was found to be a hydrophobic protein that localized to the cell membrane/cell wall fraction of M. tuberculosis, and this protein has previously been shown by others to be located on the surface of M. tuberculosis. The C3-binding activity of HbhA was localized to the C-terminus of the protein, which consists of lysine-alanine repeats. Full-length recombinant HbhA coated onto latex beads was shown to mediate the adherence of the beads to murine macrophage-like cells in both a C3-dependent and a C3-independent manner. An in-frame 576 by deletion in the hbhA gene was created in a virulent strain of M. tuberculosis using a PCR technique known as gene splicing by overlap extension (SOEing). Using the ΔhbhA mutant, HbhA was found not to be necessary for growth of M. tuberculosis in laboratory media or in macrophage-like cells, nor is HbhA required for adherence of M. tuberculosis to macrophage-like cells. HbhA is, however, required for infectivity of M. tuberculosis in mice. Mice infected with the ΔhbhA mutant show decreased growth in the lungs, liver, and spleen compared to mice infected with the wild-type strain. Using the ΔhbhA mutant strain, we were able to purify and identify a second 30-kDa C3-binding protein, HupB. These data demonstrate that HbhA is required for the in vivo but not the in vitro survival of M. tuberculosis and that HbhA is not necessary for the adherence of M. tuberculosis to the macrophage-like cells used in these studies. The expression of two proteins that bind human C3 may aid in the efficient binding of M. tuberculosis to complement receptors for uptake into mononuclear cells, or may influence other aspects of the host-parasite interaction. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The formation of triple helical, or triplex DNA has been suggested to occur in several cellular processes such as transcription, replication, and recombination. Our laboratory previously found proteins in HeLa nuclear extracts and in S. cerevisiae whole cell extracts that avidly bound a Purine-motif (Pu) triplex probe in gel shift assays, or EMSA. In order to identify a triplex DNA-binding protein, we used conventional and affinity chromatography to purify the major Pu triplex-binding protein in yeast. Peptide microsequencing and data base searches identified this protein as the product of the STM1 gene. Confirmation that Stm1p is a Pu triplex-binding protein was obtained by EMSA using both recombinant Stm1p and whole cell extracts from stm1Δ yeast. Stm1p had previously been identified as G4p2, a G-quartet DNA- and RNA-binding protein. To study the cellular role and identify the nucleic acid ligand of Stm1p in vivo, we introduced an HA epitope at either the N- or C-terminus of Stm1p and performed immunoprecipitations with the HA.11 mAb. Using peptide microsequencing and Northern analysis, we positively identified a subset of both large and small subunit ribosomal proteins and all four rRNAs as associating with Stm1p. DNase I treatment did not affect the association of Stm1p with ribosomal components, but RNase A treatment abolished the association with all ribosomal proteins and RNA, suggesting this association is RNA-dependent. Sucrose gradient fractionation followed by Western and EMSA analysis confirmed that Stm1p associates with intact 80S monosomes, but not polysomes. The presence of additional, unidentified RNA in the Stm1p-immunoprecipitate, and the absence of tRNAs and elongation factors suggests that Stm1p binds RNA and could be involved in the regulation of translation. Immunofluorescence microscopy data showed Stm1p to be located throughout the cytoplasm, with a specific movement to the bud during the G2 phase of the cell cycle. A dramatically flocculent, large cell phenotype is observed when Stm1p has a C-terminal HA tag in a protease-deficient strain background. When STM1 is deleted in this background, the same phenotype is not observed and the deletion yeast grow very slowly compared to the wild-type. These data suggest that STM1 is not essential, but plays a role in cell growth by interacting with an RNP complex that may contain G*G multiplex RNA. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Proto-oncogene c-fos is a member of the class of early-response genes whose transient expression plays a crucial role in cell proliferation, differentiation, and apoptosis. Degradation of c- fos mRNA is an important mechanism for controlling c-fos expression. Rapid mRNA turnover mediated by the protein-coding-region determinant (mCRD) of the c-fos transcript illustrates a functional interplay between mRNA turnover and translation that coordinately influences the fate of cytoplasmic mRNA. It is suggested that mCRD communicates with the 3′ poly(A) tail via an mRNP complex comprising mCRD-associated proteins, which prevents deadenylation in the absence of translation. Ribosome transit as a result of translation is required to alter the conformation of the mRNP complex, thereby eliciting accelerated deadenylation and mRNA decay. To gain further insight into the mechanism of mCRD-mediated mRNA turnover, Unr was identified as an mCRD-binding protein, and its binding site within mCRD was characterized. Moreover, the functional role for Unr in mRNA decay was demonstrated. The result showed that elevation of Unr protein level in the cytoplasm led to inhibition of mRNA destabilization by mCRD. In addition, GST pull-down assay and immuno-precipitation analysis revealed that Unr interacted with PABP in an RNA-independent manner, which identified Unr as a novel PABP-interacting protein. Furthermore, the Unr interacting domain in PABP was characterized. In vivo mRNA decay experiments demonstrated a role for Unr-PABP interaction in mCRD-mediated mRNA decay. In conclusion, the findings of this study provide the first evidence that Unr plays a key role in mCRD-mediated mRNA decay. It is proposed that Unr is recruited by mCRD to initiate the formation of a dynamic mRNP complex for communicating with poly(A) tail through PABP. This unique mRNP complex may couple translation to mRNA decay, and perhaps to recruit the responsible nuclease for deadenylation. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Arp2/3 complex, a stable assembly of two actin-related proteins (Arp2 and Arp3) with five other subunits, caps the pointed end of actin filaments and nucleates actin polymerization with low efficiency. WASp and Scar are two similar proteins that bind the p21 subunit of the Arp2/3 complex, but their effect on the nucleation activity of the complex was not known. We report that full-length, recombinant human Scar protein, as well as N-terminally truncated Scar proteins, enhance nucleation by the Arp2/3 complex. By themselves, these proteins either have no effect or inhibit actin polymerization. The actin monomer-binding W domain and the p21-binding A domain from the C terminus of Scar are both required to activate Arp2/3 complex. A proline-rich domain in the middle of Scar enhances the activity of the W and A domains. Preincubating Scar and Arp2/3 complex with actin filaments overcomes the initial lag in polymerization, suggesting that efficient nucleation by the Arp2/3 complex requires assembly on the side of a preexisting filament—a dendritic nucleation mechanism. The Arp2/3 complex with full-length Scar, Scar containing P, W, and A domains, or Scar containing W and A domains overcomes inhibition of nucleation by the actin monomer-binding protein profilin, giving active nucleation over a low background of spontaneous nucleation. These results show that Scar and, likely, related proteins, such as the Cdc42 targets WASp and N-WASp, are endogenous activators of actin polymerization by the Arp2/3 complex.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The ability of Neisseria meningitidis (MC) to interact with cellular barriers is essential to its pathogenesis. With epithelial cells, this process has been modeled in two steps. The initial stage of localized adherence is mediated by bacterial pili. After this phase, MC disperse and lose piliation, thus leading to a diffuse adherence. At this stage, microvilli have disappeared, and MC interact intimately with cells and are, in places, located on pedestals of actin, thus realizing attaching and effacing (AE) lesions. The bacterial attributes responsible for these latter phenotypes remain unidentified. Considering that bacteria are nonpiliated at this stage, pili cannot be directly responsible for this effect. However, the initial phase of pilus-mediated localized adherence is required for the occurrence of diffuse adherence, loss of microvilli, and intimate attachment, because nonpiliated bacteria are not capable of such a cellular interaction. In this work, we engineered a mutation in the cytoplasmic nucleotide-binding protein PilT and showed that this mutation increased piliation and abolished the dispersal phase of bacterial clumps as well as the loss of piliation. Furthermore, no intimate attachment nor AE lesions were observed. On the other hand, PilT− MC remained adherent as piliated clumps at all times. Taken together these data demonstrate that the induction of diffuse adherence, intimate attachment, and AE lesions after pilus-mediated adhesion requires the cytoplasmic PilT protein.