888 resultados para modelling of dynamics
Resumo:
This paper presents a three dimensional, thermos-mechanical modelling approach to the cooling and solidification phases associated with the shape casting of metals ei. Die, sand and investment casting. Novel vortex-based Finite Volume (FV) methods are described and employed with regard to the small strain, non-linear Computational Solid Mechanics (CSM) capabilities required to model shape casting. The CSM capabilities include the non-linear material phenomena of creep and thermo-elasto-visco-plasticity at high temperatures and thermo-elasto-visco-plasticity at low temperatures and also multi body deformable contact with which can occur between the metal casting of the mould. The vortex-based FV methods, which can be readily applied to unstructured meshes, are included within a comprehensive FV modelling framework, PHYSICA. The additional heat transfer, by conduction and convection, filling, porosity and solidification algorithms existing within PHYSICA for the complete modelling of all shape casting process employ cell-centred FV methods. The termo-mechanical coupling is performed in a staggered incremental fashion, which addresses the possible gap formation between the component and the mould, and is ultimately validated against a variety of shape casting benchmarks.
Resumo:
Abstract not available
Resumo:
Abstract not available
Resumo:
Abstract not available
Resumo:
Abstract not available
Resumo:
Water removal in paper manufacturing is an energy-intensive process. The dewatering process generally consists of four stages of which the first three stages include mechanical water removal through gravity filtration, vacuum dewatering and wet pressing. In the fourth stage, water is removed thermally, which is the most expensive stage in terms of energy use. In order to analyse water removal during a vacuum dewatering process, a numerical model was created by using a Level-Set method. Various different 2D structures of the paper model were created in MATLAB code with randomly positioned circular fibres with identical orientation. The model considers the influence of the forming fabric which supports the paper sheet during the dewatering process, by using volume forces to represent flow resistance in the momentum equation. The models were used to estimate the dry content of the porous structure for various dwell times. The relation between dry content and dwell time was compared to laboratory data for paper sheets with basis weights of 20 and 50 g/m2 exposed to vacuum levels between 20 kPa and 60 kPa. The comparison showed reasonable results for dewatering and air flow rates. The random positioning of the fibres influences the dewatering rate slightly. In order to achieve more accurate comparisons, the random orientation of the fibres needs to be considered, as well as the deformation and displacement of the fibres during the dewatering process.
Resumo:
Abstract not available
Resumo:
This article is the third in a series working towards the construction of a realistic, evolving, non-linear force-free coronal-field model for the solar magnetic carpet. Here, we present preliminary results of 3D time-dependent simulations of the small-scale coronal field of the magnetic carpet. Four simulations are considered, each with the same evolving photospheric boundary condition: a 48-hour time series of synthetic magnetograms produced from the model of Meyer et al. ( Solar Phys. 272, 29, 2011). Three simulations include a uniform, overlying coronal magnetic field of differing strength, the fourth simulation includes no overlying field. The build-up, storage, and dissipation of magnetic energy within the simulations is studied. In particular, we study their dependence upon the evolution of the photospheric magnetic field and the strength of the overlying coronal field. We also consider where energy is stored and dissipated within the coronal field. The free magnetic energy built up is found to be more than sufficient to power small-scale, transient phenomena such as nanoflares and X-ray bright points, with the bulk of the free energy found to be stored low down, between 0.5 - 0.8 Mm. The energy dissipated is currently found to be too small to account for the heating of the entire quiet-Sun corona. However, the form and location of energy-dissipation regions qualitatively agree with what is observed on small scales on the Sun. Future MHD modelling using the same synthetic magnetograms may lead to a higher energy release.
Resumo:
Abstract not available
Resumo:
Abstract not available
Resumo:
Abstract not available
Resumo:
Succinate is a naturally occurring metabolite in organism’s cell and is industrially important chemical with various applications in food and pharmaceutical industry. It is also widely used to produce bio-degradable plastics, surfactants, detergents etc. In last decades, emphasis has been given to bio-based chemical production using industrial biotechnology route rather than fossil-based production considering sustainability and environment friendly economy. In this thesis I am presenting a computational model for silico metabolic engineering of Saccharomyces cerevisiae for large scale production of succinate. For metabolic modelling, I have used OptKnock and OptGene optimization algorithms to identify the reactions to delete from the genome-scale metabolic model of S. cerevisiae to overproduce succinate by coupling with organism’s growth. Both OptKnock and OptGene proposed numerous straightforward and non-intuitive deletion strategies when number of constraints including growth constraint to the model were applied. The most interesting strategy identified by both algorithms was deletion combination of pyruvate decarboxylase and Ubiquinol:ferricytochrome c reductase(respiratory enzyme) reactions thereby also suggesting anaerobic fermentation of the organism in glucose medium. Such strategy was never reported earlier for growth-coupled succinate production in S.cerevisiae.
Resumo:
This thesis presents quantitative studies of T cell and dendritic cell (DC) behaviour in mouse lymph nodes (LNs) in the naive state and following immunisation. These processes are of importance and interest in basic immunology, and better understanding could improve both diagnostic capacity and therapeutic manipulations, potentially helping in producing more effective vaccines or developing treatments for autoimmune diseases. The problem is also interesting conceptually as it is relevant to other fields where 3D movement of objects is tracked with a discrete scanning interval. A general immunology introduction is presented in chapter 1. In chapter 2, I apply quantitative methods to multi-photon imaging data to measure how T cells and DCs are spatially arranged in LNs. This has been previously studied to describe differences between the naive and immunised state and as an indicator of the magnitude of the immune response in LNs, but previous analyses have been generally descriptive. The quantitative analysis shows that some of the previous conclusions may have been premature. In chapter 3, I use Bayesian state-space models to test some hypotheses about the mode of T cell search for DCs. A two-state mode of movement where T cells can be classified as either interacting to a DC or freely migrating is supported over a model where T cells would home in on DCs at distance through for example the action of chemokines. In chapter 4, I study whether T cell migration is linked to the geometric structure of the fibroblast reticular network (FRC). I find support for the hypothesis that the movement is constrained to the fibroblast reticular cell (FRC) network over an alternative 'random walk with persistence time' model where cells would move randomly, with a short-term persistence driven by a hypothetical T cell intrinsic 'clock'. I also present unexpected results on the FRC network geometry. Finally, a quantitative method is presented for addressing some measurement biases inherent to multi-photon imaging. In all three chapters, novel findings are made, and the methods developed have the potential for further use to address important problems in the field. In chapter 5, I present a summary and synthesis of results from chapters 3-4 and a more speculative discussion of these results and potential future directions.