917 resultados para microscope
Resumo:
This study was designed to investigate the effect of curcumin (diferuloylmethane) on the proliferation and apoptosis of hepatic stellate cells (HSC). The cell line HSC-T6 (1.25 x 10(5) cells/mL) was incubated with curcumin and HSC proliferation was detected by a methyl thiazolyl tetrazolium colorimetric assay. HSC apoptosis was detected by flow cytometry, transmission electron microscope and agarose gel electrophoresis. HSC proliferation was significantly inhibited in a concentration-dependent manner (10.6 to 63.5%) after incubation with 20-100 μM curcumin, compared with a control group. At 20, 40, and 60 μM, after 24 h of incubation, curcumin was associated with a significant increase in the number of HSC in the G2/M phase, and a significant decrease in cell numbers in the S phase (P < 0.05). At these concentrations, curcumin was also associated with an increase in the apoptosis index of 15.3 ± 1.9, 26.7 ± 2.8, and 37.6 ± 4.4%, respectively, compared to control (1.9 ± 0.6%, P < 0.01). At 40 μM, the curcumin-induced apoptosis index at 12, 24, 36, and 48 h of incubation was 12.0 ± 2.4, 26.7 ± 3.5, 33.8 ± 1.8, and 49.3 ± 1.6%, respectively (P < 0.01). In conclusion, curcumin inhibits the in vitro proliferation of HSCs in the G2/M phase of the cell cycle and also induces apoptosis in a concentration- and time-dependent manner. The in vivo effect of curcumin on HSCs requires further investigation.
Resumo:
The purpose of this study was to investigate the protective effects of ischemic post-conditioning on damage to the barrier function of the small intestine caused by limb ischemia-reperfusion injury. Male Wistar rats were randomly divided into 3 groups (N = 36 each): sham operated (group S), lower limb ischemia-reperfusion (group LIR), and post-conditioning (group PC). Each group was divided into subgroups (N = 6) according to reperfusion time: immediate (0 h; T1), 1 h (T2), 3 h (T3), 6 h (T4), 12 h (T5), and 24 h (T6). In the PC group, 3 cycles of reperfusion followed by ischemia (each lasting 30 s) were applied immediately. At all reperfusion times (T1-T6), diamine oxidase (DAO), superoxide dismutase (SOD), and myeloperoxidase (MPO) activity, malondialdehyde (MDA) intestinal tissue concentrations, plasma endotoxin concentrations, and serum DAO, tumor necrosis factor-α (TNF-α), and interleukin-10 (IL-10) concentrations were measured in sacrificed rats. Chiu’s pathology scores for small intestinal mucosa were determined under a light microscope and showed that damage to the small intestinal mucosa was lower in group PC than in group LIR. In group PC, tissue DAO and SOD concentrations at T2 to T6, and IL-10 concentrations at T2 to T5 were higher than in group LIR (P < 0.05); however, tissue MPO and MDA concentrations, and serum DAO and plasma endotoxin concentrations at T2 to T6, as well as TNF-α at T2 and T4 decreased significantly (P < 0.05). These results show that ischemic post-conditioning attenuated the permeability of the small intestines after limb ischemia-reperfusion injury. The protective mechanism of ischemic post-conditioning may be related to inhibition of oxygen free radicals and inflammatory cytokines that cause organ damage.
Resumo:
The presence of ochratoxin A (OTA) in foods has led some countries to establish regulatory limits. Although coffee is not a major source of OTA in human consumption, the European Community (EC) may establish limits in the near future, with possible economic impact on producing countries. This study measured the OTA content with HPLC in 37 samples of Brazilian green coffee exclusive destined to the export market and also verified a possible relation between coffee defects and OTA content. The results showed an OTA concentration ranging from < 0.16ng/g (detection limit) to 6.24ng/g (average of 3.20ng/g) for 37 samples. Of the five samples observed for defects, toxin content of sound beans ranged from 0.22 to 0.80ng/g (average 0.46ng/g) and of defective beans from 0.42 to 17.46 (average 4.52ng/g). Morphological differences among sound and defective beans showed no susceptibility for mould invasion under optical microscopy observation. One black bean depicted the presence of mould and spores on observation under Scanning Electron Microscope (SEM). According to this investigation, Brazilian green coffee for export complies with most limits in place.
Resumo:
Upconversion photoluminescence is a unique property of mostly certain inorganic materials, which are capable of converting low-energy infrared radiation into a higher-energy emission at visible wavelengths. This anti-Stokes shift enables luminescence detection without autofluorescence, which makes the upconverting materials a highly suitable reporter technology for optical biosensing applications. Furthermore, they exhibit long luminescence lifetime with narrow bandwidths also at the optical window of biomaterials enabling luminescence measurements in challenging sample matrices, such as whole blood. The aim of this thesis was to study the unique properties and the applicability of nano-sized upconverting phosphors (UCNPs) as reporters in biosensing applications. To render the inorganic nanophosphors water-dispersible and biocompatible, they were subjected to a series of surface modifications starting with silica-encapsulation and ending with a bioconjugation step with an analyte-recognizing biomolecule. The paramagnetism of the lanthanide dopants in the nanophosphors was exploited to develop a highly selective separation method for the UCNP-bioconjugates based on the magnetic selectivity of the high gradient magnetic separation (HGMS) system. The applicability of the nano-sized UCNPs as reporters in challenging sample matrices was demonstrated in two homogeneous sensing applications based on upconversion resonance energy transfer (UC-RET). A chemosensor for intracellular pH was developed exploiting UC-RET between the UCNP and a fluorogenic pH-sensitive dye with strongly increasing fluorescence intensity in decreasing pH. The pH-independent emission of the UCNPs at 550 nm was used for referencing. The applicability of the pH-nanosensor for intracellular pH measurement was tested in HeLa cells, and the acidic pH of endosomes could be detected with a confocal fluorescence microscope. Furthermore, a competitive UC-RET-based assay for red blood cell folic acid was developed for the measurement of folate directly from a whole blood sample. The optically transparent window of biomaterials was used in both the excitation and the measurement of the UC-RET sensitized emission of a near-infrared acceptor dye to minimize sample absorption, and the anti-Stokes detection completely eliminated the Stokes-shifted autofluorescence. The upconversion photoluminescence efficiency is known to be dependent on crystallite size, because the increasing surface-to-volume ratio of nano-sized UCNPs renders them more susceptible to quenching effects of the environment than their bulk counterpart. Water is known to efficiently quench the luminescence of lanthanide dopants. In this thesis, the quenching mechanism of water was studied using luminescence decay measurements. Water was found to quench the luminescence of UCNPs by increasing the non-radiative relaxation of the excited state of Yb3+ sensitizer ion, which had a very strong quenching effect on upconversion luminescence intensity.
Resumo:
Fiber-reinforced composite fixed dental prostheses – Studies of the materials used as pontics University of Turku, Faculty of Medicine, Institute of Dentistry, Department of Biomaterials Science, Finnish Doctoral Program in Oral Sciences – FINDOS, Annales Universitatis Turkuensis, Turku, Finland 2015 Fiber-reinforced composites (FRC), a non-metallic biomaterial, represent a suitable alternative in prosthetic dentistry when used as a component of fixed dental prostheses (FDPs). Some drawbacks have been identified in the clinical performance of FRC restorations, such as delamination of the veneering material and fracture of the pontic. Therefore, the current series of studies were performed to investigate the possibilities of enhancing the mechanical and physical properties of FRC FDPs by improving the materials used as pontics, to then heighten their longevity. Four experiments showed the importance of the pontic design and surface treatment in the performance of FRC FDPs. In the first, the load-bearing capacities of inlay-retained FRC FDPs with pontics of various materials and thicknesses were evaluated. Three different pontic materials were assessed with different FRC framework vertical positioning. Thicker pontics showed increased load-bearing capacities, especially ceramic pontics. A second study was completed investigating the influence of the chemical conditioning of the ridge-lap surface of acrylic resin denture teeth on their bonding to a composite resin. Increased shear bond strength demonstrated the positive influence of the pretreatment of the acrylic surfaces, indicating dissolution of the denture surfaces, and suggesting potential penetration of the monomer systems into the surface of denture teeth. A third study analyzed the penetration depth of different monomer systems on the acrylic resin denture teeth surfaces. The possibility of establishing a durable bond between acrylic pontics and FRC frameworks was demonstrated by the ability of monomers to penetrate the surface of acrylic resin denture teeth, measured by a confocal scanning type microscope. A fourth study was designed to evaluate the load-bearing capacities of FRC FDPs using the findings of the previous three studies. In this case, the performance of pre-shaped acrylic resin denture teeth used as pontics with different composite resins as filling materials was evaluated. The filling material influenced the load-bearing capacities, providing more durable FRC FDPs. It can be concluded that the mechanical and physical properties of FRC FDPs can be improved as has been shown in the development of this thesis. The improvements reported then might provide long lasting prosthetic solutions of this kind, positioning them as potentially permanent rehabilitation treatments. Key words: fiber-reinforced composite, fixed dental prostheses, inlay-retained bridges, adhesion, acrylic resin denture teeth, dental material.
Resumo:
Full contour monolithic zirconia restorations have shown an increased popularity in the dental field over the recent years, owing to its mechanical and acceptable optical properties. However, many features of the restoration are yet to be researched and supported by clinical studies to confirm its place among the other indirect restorative materials This series of in vitro studies aimed at evaluating and comparing the optical and mechanical properties, light cure irradiance, and cement polymerization of multiple monolithic zirconia material at variable thicknesses, environments, treatments, and stabilization. Five different monolithic zirconia materials, four of which were partially stabilized and one fully stabilized were investigated. The optical properties in terms of surface gloss, translucency parameter, and contrast ratio were determined via a reflection spectrophotometer at variable thicknesses, coloring, sintering method, and after immersion in an acidic environment. Light cure irradiance and radiant exposure were quantified through the specimens at variable thicknesses and the degree of conversion of two dual-cure cements was determined via Fourier Transform Infrared spectroscopy. Bi-axial flexural strength was evaluated to compare between the partially and fully stabilized zirconia prepared using different coloring and sintering methods. Surface characterization was performed using a scanning electron microscope and a spinning disk confocal microscope. The surface gloss and translucency of the zirconia investigated were brand and thickness dependent with the translucency values decreasing as the thickness increased. Staining decreased the translucency of the zirconia and enhanced surface gloss as well as the flexural strength of the fully stabilized zirconia but had no effect on partially stabilized zirconia. Immersion in a corrosive acid increased surface gloss and decreased the translucency of some zirconia brands. Zirconia thickness was inversely related to the amount of light irradiance, radiant exposure, and degree of monomer conversion. Type of sintering furnace had no effect on the optical and mechanical properties of zirconia. Monolithic zirconia maybe classified as a semi-translucent material that is well influenced by the thickness, limiting its use in the esthetic zones. Conventional acid-base reaction, autopolymerizing and dual-cure cements are recommended for its cementation. Its desirable mechanical properties give it a high potential as a restoration for posterior teeth. However, close monitoring with controlled clinical studies must be determined before any definite clinical recommendations can be drawn.
Resumo:
In order to determine thermobacteriological parameters for B. stearothermophilus spores, they were diluted in a saline solution medium and in ground corn-soybean mix, distributed in TDT tube, and submitted to heat for a specific period of time. The D value (time to reduce 1 log cycle of microbial count under a certain temperature) and z value (variation of temperature to cause 10-fold change in D value) were estimated. To estimate their dimensions, the spores were visualized by using a scanning electron microscope. D121.1 ºC and z values for these spores, as determined in the saline solution, were 8.8 minutes and 12.8 ºC, respectively. D121,1 ºC and z values determined in the corn-soy mix were 14.2 minutes and 23.7 ºC, respectively. The micrographs indicated that the spores have homogeneous shape and size, with length and diameter of 2 and 1 µm, respectively. These results confirm that the spore is highly thermal-resistant, and it is a good biological indicator to evaluate the extrusion process as a feed sterilizer.
Resumo:
Strawberries were submitted to freezing after pre-treatments with hydrocolloid and calcium salts (pectin and calcium chloride) at different concentrations, in the attempt to establish a correlation of the effects of these substances and their processing, on the physical and microstructural characteristics of fruits after thawing. Strawberry halves were submitted to impregnation with controlled vacuum pressure of 84.4, 50.5 and 16.6 kPa; comprising pectin at concentrations of 0, 1.5 and 3%; with the addition of calcium chloride at concentrations of 0, 3 and 6%; and glucose at 20%, for 4 hours. Measurements were made of the total soluble solid contents, cellular fluid loss, texture and viscosity of the solution, before and after the freezing/thawing. Images of the tissue cuts during the freezing, in function of time, were taken in an optic microscope coupled to a cold-stage and controlled temperature system, where the reduction of the cellular area was quantified using an image analyzing software. The pectin concentration had an influence on and demonstrated a potential for protection of the frozen tissue samples. The photomicrographs showed that the loss of cellular fluid occurs during the growth of ice formed in the intercellular spaces and it is retarded through treatments with high pectin concentrations.
Resumo:
Guava (Psidium guajava L.) is a highly perishable fruit due to its intense metabolism during ripening. Information on the enzyme activities that degrade pectic substances, as well as the amount of pectin, is very contradictory and not clearly defined. Thus, this study aimed to monitor the changes occurred in the fruit during ripening through histochemical, physical, and scanning microscopy processes. Guavas were picked at the half-mature stage and stored for 9 days at 22 ± 1 °C and 78 ± 1% RH. The analyses conducted on the day of harvest (0) and each day of storage (1, 2, 3, 4, 5, 6, 7, and 8 days) were: firmness and histochemical analyses (ferric chloride, lugol, comassie blue, vanillin hydrochloric, and ruthenium red) observed under an optic microscope and a scanning electron microscope. Ruthenium red showed a high amount of pectin in the cell wall on day zero as well as its decrease in the wall during ripening and its accumulation in the central area of the cell. Scanning microscopy showed loss of the cell structure during ripening. Those observations suggest that the pectin is the main polymer responsible for firmness maintenance in the guava fruit.
Resumo:
In this study, the morphological characteristics of cocoa beverage powder granules under minimal, average, and maximal process conditions of a steam agglomerator were studied. a stereoscopic microscope coupled to a digital camera was used for the morphological analysis. The images were analyzed to obtain shape and size descriptors. aiming to evaluate the descriptors, 150 particles were analyzed. The results showed that there was no difference between the shape descriptors - compacity, circularity, roughness, and aspect ratio - in the operating conditions evaluated. It was observed that the cocoa beverage powder granules are elongated in shape. The size descriptors, area, perimeter, perimeter of convex bounding polygon, minimal and maximal Feret diameter, were different in the process conditions for the granules of size above 600 μm. as for the minimal process conditions, especially due to low solid feed rates, there is an increase in the size descriptor values. In addition, under the minimum process conditions, in which there is low solid feed rate (400g/min) for a steam pressure of 1.0 bar, it was obtained a good granular condition with retention of 81.1% of granules on sieves with aperture size between 300 and 1190 μm.
Resumo:
PhotoAcoustic Imaging (PAI) is a branch in clinical and pre-clinical imaging, that refers to the techniques mapping acoustic signals caused by the absorption of the short laser pulse. This conversion of electromagnetic energy of the light to the mechanical (acoustic) energy is usually called photoacoustic effect. PAI, by combining optical excitation with acoustical detection, is able to preserve the diffraction limited spatial resolution. At the same time, the penetration depth is extended beyond the diffusive limit. The Laser-Scanning PhotoAcoustic Microscope system (LS-PAM) has been developed, that offers the axial resolution of 7.75 µm with the lateral resolution better than 10 µm. The first in vivo imaging experiments were carried out. Thus, in vivo label-free imaging of the mouse ear was performed. The principle possibility to image vessels located in deep layers of the mouse skin was shown. As well as that, a gold printing sample, vasculature of the Chick Chorioallantoic Membrane Assay, Drosophila larvae were imaged by PAI. During the experimental work, a totally new application of PAM was found, in which the acoustic waves, generated by incident light can be used for further imaging of another sample. In order to enhance the performance of the presented system two main recommendation can be offered. First, the current system should be transformed into reflection-mode setup system. Second, a more powerful source of light with the sufficient repetition rate should be introduced into the system.
Resumo:
In this doctoral thesis, a tomographic STED microscopy technique for 3D super-resolution imaging was developed and utilized to observebone remodeling processes. To improve upon existing methods, wehave used a tomographic approach using a commercially available stimulated emission depletion (STED) microscope. A certain region of interest (ROI) was observed at two oblique angles: one at a standard inverted configuration from below (bottom view) and another from the side (side view) via a micro-mirror positioned close to the ROI. The two viewing angles were reconstructed into a final tomogram. The technique, named as tomographic STED microscopy, was able to achieve an axial resolution of approximately 70 nm on microtubule structures in a fixed biological specimen. High resolution imaging of osteoclasts (OCs) that are actively resorbing bone was achieved by creating an optically transparent coating on a microscope coverglass that imitates a fractured bone surface. 2D super-resolution STED microscopy on the bone layer showed approximately 60 nm of lateral resolution on a resorption associated organelle allowing these structures to be imaged with super-resolution microscopy for the first time. The developed tomographic STED microscopy technique was further applied to study resorption mechanisms of OCs cultured on the bone coating. The technique revealed actin cytoskeleton with specific structures, comet-tails, some of which were facing upwards and some others were facing downwards. This, in our opinion, indicated that during bone resorption, an involvement of the actin cytoskeleton in vesicular exocytosis and endocytosis is present. The application of tomographic STED microscopy in bone biology demonstrated that 3D super-resolution techniques can provide new insights into biological 3D nano-structures that are beyond the diffraction-limit when the optical constraints of super-resolution imaging are carefully taken into account.
Resumo:
Tämän diplomityön tavoitteena on kehittää sopiva analyyttinen menetelmä muokatun kraft-sellukuidun substituutioasteen (DS) kvantitatiivista määrittämistä varten. Muokkauksella tarkoitetaan tässä yhteydessä joko kovalenttisesti tai adsorption avulla tapahtuvaa molekyylin kiinnittymistä sellukuidun pinnalle. Työn kirjallisuusosuudessa käsitellään lyhyesti eri muokkaustapoja ja yhdisteitä joiden avulla voidaan saavuttaa haluttuja ominaisuuksia sellusta valmistetuille lopputuotteille. Lisäksi kirjallisuusosuudessa käydään läpi käyttötarkoitukseen soveltuvimpia suoria ja epäsuoria analyysimenetelmiä. Analyysimenetelmistä kaikkein lupaavimpia testattiin työn kokeellisessa osassa. Diplomityön kokeellisessa osassa keskityttiin kehittämään muokatulle sellulle kvantitatiivista menetelmää DS:n määrittämiseksi Fourier-muunnos infrapuna-vaimennettu kokonaisheijastus (FTIR-ATR) spektrometrillä. Kirjallisuuskatsauksessa ei löytynyt yhtään dokumentoitua tutkimusta, jossa FTIR-ATR menetelmää olisi käytetty muokatun sellukuidun kvantitatiiviseen tutkimukseen. Muiden analyysimenetelmien, kuten alkuaineanalyysin, termogravimetrisen analyysin (TGA) ja valomikroskopian avulla pyrittiin tuottamaan lisätietoa muokkauksesta. Kvantitatiivisen FTIR-ATR menetelmän kehitykseen käytetyt muokatut sellukuidut olivat selluloosa-asetaattia ja selluloosa betainaattia. Saatujen tulosten perusteella muokattujen sulfiitti- ja kraft sellukuitujen DS:n kvantitatiivinen määrittäminen on mahdollista FTIR-ATR menetelmällä. Vähäinen kalibrointipisteiden määrä vaikeutti tarkan analyysimenetelmän tekemistä. Kehitetyn menetelmän suurimpina ongelmina olivat kiinteiden näytteiden heterogeenisyys sekä mahdollisten epäpuhtauksien tunnistaminen. Jatkotutkimusten avulla kehitettyä menetelmää on kuitenkin mahdollista käyttää muokattujen sellukuitujen jatkuvaan analysointiin selluteollisuudessa.
Voimalaitosten kattilaputkien sisäpuolisten kerrostumien paksuuden mittaaminen ultraäänimenetelmällä
Resumo:
Höyryvoimalaitoksen käyttöönotossa muodostuu kattilaputkien sisäpinnoille niitä korroosiolta suojaava ohut metallioksidikerros. Tämän kerroksen päälle kasvaa kattilan käytön aikana haitallista kerrostumaa paikallisen korroosion tai kattilavedessä olevien epäpuhtauksien kerääntymisen tai kiteytymisen seurauksena. Kerrostuma haittaa lämmönsiirtoa tulipesästä putkiseinämän läpi kattilaveteen. Putkien lämpötilan nousu suunniteltua korkeammaksi kasvattaa putkivaurioiden ja sisäpuolisen korroosion riskiä. Tästä johtuen paksuksi kasvaneet kerrostumat pyritään poistamaan happokäsittelyllä eli peittauksella ennen vaurioiden syntyä. Perinteisesti kerrostumapaksuus on määritetty kattilasta irrotetuista näyteputkista mikroskoopilla. Työn tavoitteena oli tutkia uudenlaisen ultraäänimittauksen teoriaa ja selvittää sen toimivuus höyrystinputkien kerrostumapaksuusmittauksissa. Lisäksi tavoitteena oli tutkia voimalaitoksen höyrystimen sisäpuolisten kerrostumien muodostumista ja niiden vaikutuksia sekä kattilan peittaustarpeen arviointia. Höyrystimen kerrostumien kasvunopeuteen vaikuttavat eniten voimalaitostyyppi, käytetty vesikemia ja kattilaveteen kulkeutuvien epäpuhtauksien määrä. Kasvunopeus vaihtelee laitosten välillä suuresti ja eroaa myös tulipesän eri kohdissa. Kattilaveden epäpuhtauspitoisuus ja kerrostumapaksuus vaikuttavat molemmat korroosiovaurioiden todennäköisyyteen. Peittauspaksuuden ohjearvoissa tulisi huomioida kattilan käyttöpaine, kattilatyyppi ja riski kattilaveden laadun heikkenemiselle. Putkinäytteistä ja laitoksilla suoritettujen mittauksien perusteella uusi ultraäänitekniikka tuottaa luotettavia tuloksia tavanomaisten kerrostumien mittauksessa. Vain yhdellä laitoksella esiintyi irtonaisen sakan kaltaista kerrostumaa, jota mittaus ei kyennyt havaitsemaan. Mittaustulokset kerrostumista tulipesän eri osissa antavat hyvän perustan peittaustarpeen arviointiin.
Resumo:
The objective of this study was to investigate the morphology, anatomy and germination behaviour of Phoenix roebelenii seeds. Biometric data were obtained by measuring 100 seeds extracted from recently harvested fruits and air-dried for one day. Four replications of 50 seeds each were previously treated with Vitavax-Thiran and then put to germinate in Sphagnum sp. in plastic trays at room temperature. Morphological details of the seeds were documented with the help of a scanning electronic microscope and then drawings were made with the help of a clear camera coupled to a stereomicroscope. Permanent lamina containing embryo sections were prepared to study its anatomy. The mean dimensions of the seeds were: length of 10.32mm, width of 5.21mm and thickness of 3.91mm. The weight of one thousand seeds was of 151.1g and the mean number of units.kg-1 was 6,600. Germination started between 27 and 58 days after sowing. The seeds are of the albuminous type, the endosperm is hard and the embryo (which is not clearly differentiated) occupies a lateral and peripheral position. During seed germination, seedling protrusion begins with the opening of an operculum, through which the cotyledon petiole is emitted with the embryonic axis at its tip. The portion of the cotyledon petiole that remains inside the seeds acts as a haustorium for the absorption of nutrients from the endosperm. The plumule emerges through a rift in the posterior part of the cotyledon. Secondary roots are observed to grow from the anterior part of the primary root.