971 resultados para methane partial oxidation
Resumo:
Accurately quantifying total freshwater storage methane release to atmosphere requires the spatial–temporal measurement of both diffusive and ebullitive emissions. Existing floating chamber techniques provide localised assessment of methane flux, however, significant errors can arise when weighting and extrapolation to the entire storage, particularly when ebullition is significant. An improved technique has been developed that compliments traditional chamber based experiments to quantify the storage-scale release of methane gas to atmosphere through ebullition using the measurements from an Optical Methane Detector (OMD) and a robotic boat. This provides a conservative estimate of the methane emission rate from ebullition along with the bubble volume distribution. It also georeferences the area of ebullition activity across entire storages at short temporal scales. An assessment on Little Nerang Dam in Queensland, Australia, demonstrated whole storage methane release significantly differed spatially and throughout the day. Total methane emission estimates showed a potential 32-fold variation in whole-of-dam rates depending on the measurement and extrapolation method and time of day used. The combined chamber and OMD technique showed that 1.8–7.0% of the surface area of Little Nerang Dam is accounting for up to 97% of total methane release to atmosphere throughout the day. Additionally, over 95% of detectable ebullition occurred in depths less than 12 m during the day and 6 m at night. This difference in spatial and temporal methane release rate distribution highlights the need to monitor significant regions of, if not the entire, water storage in order to provide an accurate estimate of ebullition rates and their contribution to annual methane emissions.
Resumo:
Purpose The objectives of this study were to examine the effect of 4-week moderate- and high-intensity interval training (MIIT and HIIT) on fat oxidation and the responses of blood lactate (BLa) and rating of perceived exertion (RPE). Methods Ten overweight/obese men (age = 29 ±3.7 years, BMI = 30.7 ±3.4 kg/m2) participated in a cross-over study of 4-week MIIT and HIIT training. The MIIT training sessions consisted of 5-min cycling stages at mechanical workloads 20% above and 20% below 45%VO2peak. The HIIT sessions consisted of intervals of 30-s work at 90%VO2peak and 30-s rest. Pre- and post-training assessments included VO2max using a graded exercise test (GXT) and fat oxidation using a 45-min constant-load test at 45%VO2max. BLa and RPE were also measured during the constant-load exercise test. Results There were no significant changes in body composition with either intervention. There were significant increases in fat oxidation after MIIT and HIIT (p ≤ 0.01), with no effect of intensity. BLa during the constant-load exercise test significantly decreased after MIIT and HIIT (p ≤ 0.01), and the difference between MIIT and HIIT was not significant (p = 0.09). RPE significantly decreased after HIIT greater than MIIT (p ≤ 0.05). Conclusion Interval training can increase fat oxidation with no effect of exercise intensity, but BLa and RPE decreased after HIIT to greater extent than MIIT.
Resumo:
The study of the electrodeposition of polycrystalline gold in aqueous solution is important from the viewpoint that in electrocatalysis applications ill-defined micro- and nanostructured surfaces are often employed. In this work, the morphology of gold was controlled by the electrodeposition potential and the introduction of Pb(CH3COO)2•3H2O into the plating solution to give either smooth or nanostructured gold crystallites or large dendritic structures which have been characterized by scanning electron microscopy (SEM). The latter structures were achieved through a novel in situ galvanic replacement of lead with AuCl4−(aq) during the course of gold electrodeposition. The electrochemical behavior of electrodeposited gold in the double layer region was studied in acidic and alkaline media and related to electrocatalytic performance for the oxidation of hydrogen peroxide and methanol. It was found that electrodeposited gold is a significantly better electrocatalyst than a polished gold electrode; however, performance is highly dependent on the chosen deposition parameters. The fabrication of a deposit with highly active surface states, comparable to those achieved at severely disrupted metal surfaces through thermal and electrochemical methods, does not result in the most effective electrocatalyst. This is due to significant premonolayer oxidation that occurs in the double layer region of the electrodeposited gold. In particular, in alkaline solution, where gold usually shows the most electrocatalytic activity, these active surface states may be overoxidized and inhibit the electrocatalytic reaction. However, the activity and morphology of an electrodeposited film can be tailored whereby electrodeposited gold that exhibits nanostructure within the crystallites on the surface demonstrated enhanced electrocatalytic activity compared to smaller smooth gold crystallites and larger dendritic structures in potential regions well within the double layer region.
Resumo:
An analytical evaluation of the higher ac harmonic components derived from large amplitude Fourier transformed voltammetry is provided for the reversible oxidation of ferrocenemethanol (FcMeOH) and oxidation of uric acid by an EEC mechanism in a pH 7.4 phosphate buffer at a glassy carbon (GC) electrode. The small background current in the analytically optimal fifth harmonic is predominantly attributed to faradaic current associated with the presence of electroactive functional groups on the GC electrode surface, rather than to capacitive current which dominates the background in the dc, and the initial three ac harmonics. The detection limits for the dc and the first to fifth harmonic ac components are 1.9, 5.89, 2.1, 2.5, 0.8, and 0.5 µM for FcMeOH, respectively, using a sine wave modulation of 100 mV at 21.46 Hz and a dc sweep rate of 111.76 mV s−1. Analytical performance then progressively deteriorates in the sixth and higher harmonics. For the determination of uric acid, the capacitive background current was enhanced and the reproducibility lowered by the presence of surface active uric acid, but the rapid overall 2e− rather than 1e– electron transfer process gives rise to a significantly enhanced fifth harmonic faradaic current which enabled a detection limit of 0.3 µM to be achieved which is similar to that reported using chemically modified electrodes. Resolution of overlapping voltammetric signals for a mixture of uric acid and dopamine is also achieved using higher fourth or fifth harmonic components, under very low background current conditions. The use of higher fourth and fifth harmonics exhibiting highly favorable faradaic to background (noise) current ratios should therefore be considered in analytical applications under circumstances where the electron transfer rate is fast.
Superactivation of metal electrode surfaces and its relevance to COads oxidation at fuel cell anodes
Resumo:
The inhibiting effect of COads on platinum-based anodes is a major problem in the development of ambient temperature, polyelectrolyte membrane-type fuel cells. One of the unusual features of the response for the oxidative removal of the species in question is that the response observed for this reaction in the positive sweep is highly dependent on the CO admission potential, for example, when the COads is formed in the Hads region it undergoes oxidation at unusually low potentials. Such behaviour is attributed here to hydrogen activation of the platinum surface, with the result that oxide mediators (and COads oxidation) occurs at an earlier stage of the positive sweep. It is also demonstrated, for both platinum and gold in acid solution, that dramatic premonolayer oxidation responses may be observed following suitable preactivation of the electrode surfaces. It is suggested that the defect state of a solid electrode surface is an important variable whose investigation may yield improved fuel cell anode performance.
Resumo:
The ability of the technique of large-amplitude Fourier transformed (FT) ac voltammetry to facilitate the quantitative evaluation of electrode processes involving electron transfer and catalytically coupled chemical reactions has been evaluated. Predictions derived on the basis of detailed simulations imply that the rate of electron transfer is crucial, as confirmed by studies on the ferrocenemethanol (FcMeOH)-mediated electrocatalytic oxidation of ascorbic acid. Thus, at glassy carbon, gold, and boron-doped diamond electrodes, the introduction of the coupled electrocatalytic reaction, while producing significantly enhanced dc currents, does not affect the ac harmonics. This outcome is as expected if the FcMeOH (0/+) process remains fully reversible in the presence of ascorbic acid. In contrast, the ac harmonic components available from FT-ac voltammetry are predicted to be highly sensitive to the homogeneous kinetics when an electrocatalytic reaction is coupled to a quasi-reversible electron-transfer process. The required quasi-reversible scenario is available at an indium tin oxide electrode. Consequently, reversible potential, heterogeneous charge-transfer rate constant, and charge-transfer coefficient values of 0.19 V vs Ag/AgCl, 0.006 cm s (-1) and 0.55, respectively, along with a second-order homogeneous chemical rate constant of 2500 M (-1) s (-1) for the rate-determining step in the catalytic reaction were determined by comparison of simulated responses and experimental voltammograms derived from the dc and first to fourth ac harmonic components generated at an indium tin oxide electrode. The theoretical concepts derived for large-amplitude FT ac voltammetry are believed to be applicable to a wide range of important solution-based mediated electrocatalytic reactions.
Resumo:
Gold is often considered as an inert material but it has been unequivocally demonstrated that it possesses unique electronic, optical, catalytic and electrocatalytic properties when in a nanostructured form.[1] For the latter the electrochemical behaviour of gold in aqueous media has been widely studied on a plethora of gold samples, including bulk polycrystalline and single-crystal electrodes, nanoparticles, evaporated films as well as electrodeposited nanostructures, particles and thin films.[1b, 2] It is now well-established that the electrochemical behaviour of gold is not as simple as an extended double-layer charging region followed by a monolayer oxide-formation/-removal process. In fact the so-called double-layer region of gold is significantly more complicated and has been investigated with a variety of electrochemical and surface science techniques. Burke and others[3] have demonstrated that significant processes due to the oxidation of low lattice stabilised atoms or clusters of atoms occur in this region at thermally and electrochemically treated electrodes which were confirmed later by Bond[4] to be Faradaic in nature via large-amplitude Fourier transformed ac voltammetric experiments. Supporting evidence for the oxidation of gold in the double-layer region was provided by Bard,[5] who used a surface interrogation mode of scanning electrochemical microscopy to quantify the extent of this process that forms incipient oxides on the surface. These were estimated to be as high as 20% of a monolayer. This correlated with contact electrode resistance measurements,[6] capacitance measurements[7] and also electroreflection techniques...
Resumo:
The formation of highly anisotropic AuPt alloys has been achieved via a simple electrochemical approach without the need for organic surfactants to direct the growth process. The surface and bulk properties of these materials were characterised by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX) and electrochemically by cyclic voltammetry to confirm alloy formation. It was found that AuPt materials are highly active for both the model hydrogen evolution reaction and the fuel cell relevant formic acid oxidation reaction. In particular for the latter case the preferred dehydrogenation pathway was observed at AuPt compared to nanostructured Pt prepared under identical electrochemical conditions which demonstrated the less preferred dehydration pathway. The enhanced performance is attributed to both the ensemble effect which facilitates CO(ads) removal from the surface as well as the highly anisotropic nanostructure of AuPt.
Resumo:
Purpose The eye rotation approach for measuring peripheral eye length leads to concern about whether the rotation influences results, such as through pressure exerted by eyelids or extra-ocular muscles. This study investigated whether this approach is valid. Methods Peripheral eye lengths were measured with a Lenstar LS 900 biometer for eye rotation and no-eye rotation conditions (head rotation for horizontal meridian and instrument rotation for vertical meridian). Measurements were made for 23 healthy young adults along the horizontal visual field (±30°) and, for a subset of eight participants along the vertical visual field (±25°). To investigate the influence of the duration of eye rotation, for six participants measurements were made at 0, 60, 120, 180 and 210 s after eye rotation to ±30° along horizontal and vertical visual fields. Results Peripheral eye lengths were not significantly different for the conditions along the vertical meridian (F1,7 = 0.16, p = 0.71). The peripheral eye lengths for the conditions were significantly different along the horizontal meridian (F1,22 = 4.85, p = 0.04), although not at individual positions (p ≥ 0.10) and were not important. There were no apparent differences between the emmetropic and myopic groups. There was no significant change in eye length at any position after maintaining position for 210 s. Conclusion Eye rotation and no-eye rotation conditions were similar for measuring peripheral eye lengths along horizontal and vertical visual field meridians at ±30° and ±25°, respectively. Either condition can be used to estimate retinal shape from peripheral eye lengths.
Resumo:
The application of the Bluetooth (BT) technology to transportation has been enabling researchers to make accurate travel time observations, in freeway and arterial roads. The Bluetooth traffic data are generally incomplete, for they only relate to those vehicles that are equipped with Bluetooth devices, and that are detected by the Bluetooth sensors of the road network. The fraction of detected vehicles versus the total number of transiting vehicles is often referred to as Bluetooth Penetration Rate (BTPR). The aim of this study is to precisely define the spatio-temporal relationship between the quantities that become available through the partial, noisy BT observations; and the hidden variables that describe the actual dynamics of vehicular traffic. To do so, we propose to incorporate a multi- class traffic model into a Sequential Montecarlo Estimation algorithm. Our framework has been applied for the empirical travel time investigations into the Brisbane Metropolitan region.
Resumo:
Many alternative therapies are used as first aid treatment for burns, despite limited evidence supporting their use. In this study, Aloe vera, saliva and a tea tree oil impregnated dressing (Burnaid) were applied as first aid to a porcine deep dermal contact burn, compared to a control of nothing. After burn creation, the treatments were applied for 20 min and the wounds observed at weekly dressing changes for 6 weeks. Results showed that the alternative treatments did significantly decrease subdermal temperature within the skin during the treatment period. However, they did not decrease the microflora or improve re-epithelialisation, scar strength, scar depth or cosmetic appearance of the scar and cannot be recommended for the first aid treatment of partial thickness burns.
Resumo:
Using our porcine model of deep dermal partial thickness burn injury, various cooling techniques (15 degrees C running water, 2 degrees C running water, ice) of first aid were applied for 20 minutes compared with a control (ambient temperature). The subdermal temperatures were monitored during the treatment and wounds observed and photographed weekly for 6 weeks, observing reepithelialization, wound surface area and cosmetic appearance. Tissue histology and scar tensile strength were examined 6 weeks after burn. The 2 degrees C and ice treatments decreased the subdermal temperature the fastest and lowest, however, generally the 15 and 2 degrees C treated wounds had better outcomes in terms of reepithelialization, scar histology, and scar appearance. These findings provide evidence to support the current first aid guidelines of cold tap water (approximately 15 degrees C) for 20 minutes as being beneficial in helping to heal the burn wound. Colder water at 2 degrees C is also beneficial. Ice should not be used.
Resumo:
Using our porcine model of deep dermal partial thickness burn injury, various durations (10min, 20min, 30min or 1h) and delays (immediate, 10min, 1h, 3h) of 15 degrees C running water first aid were applied to burns and compared to untreated controls. The subdermal temperatures were monitored during the treatment and wounds observed weekly for 6 weeks, for re-epithelialisation, wound surface area and cosmetic appearance. At 6 weeks after the burn, tissue biopsies were taken of the scar for histological analysis. Results showed that immediate application of cold running water for 20min duration is associated with an improvement in re-epithelialisation over the first 2 weeks post-burn and decreased scar tissue at 6 weeks. First aid application of cold water for as little as 10min duration or up to 1h delay still provides benefit.
Resumo:
We developed a reproducible model of deep dermal partial thickness burn injury in juvenile Large White pigs. The contact burn is created using water at 92 degrees C for 15s in a bottle with the bottom replaced with plastic wrap. The depth of injury was determined by a histopathologist who examined tissue sections 2 and 6 days after injury in a blinded manner. Upon creation, the circular wound area developed white eschar and a hyperaemic zone around the wound border. Animals were kept for 6 weeks or 99 days to examine the wound healing process. The wounds took between 3 and 5 weeks for complete re-epithelialisation. Most wounds developed contracted, purple, hypertrophic scars. On measurement, the thickness of the burned skin was approximately 1.8 times that of the control skin at week 6 and approximately 2.2 times thicker than control skin at 99 days after injury. We have developed various methods to assess healing wounds, including digital photographic analysis, depth of organising granulation tissue, immunohistochemistry, electron microscopy and tensiometry. Immunohistochemistry and electron microscopy showed that our porcine hypertrophic scar appears similar to human hypertrophic scarring. The development of this model allows us to test and compare different treatments on burn wounds.
Resumo:
BACKGROUND: In the paediatric population, pain and distress associated with burn injuries during wound care procedures remain a constant challenge. Although silver dressings are the gold standard for burn care in Australasia, very few high-level trials have been conducted that compare silver dressings to determine which will provide the best level of care clinically. Therefore, for paediatric patients in particular, identifying silver dressings that are associated with lower levels of pain and rapid wound re-epithelialisation is imperative. This study will determine whether there is a difference in time to re-epithelialisation and pain and distress experienced during wound care procedures among Acticoat, Acticoat combined with Mepitel and Mepilex Ag dressings for acute, paediatric partial thickness burns. METHODS/DESIGN: Children aged 0 to 15 years with an acute partial thickness (superficial partial to deep partial thickness inclusive) burn injury and a burn total body surface area of = 10% will be eligible for the trial. Patients will be randomised to one of the three dressing groups: (1) Acticoat or (2) Acticoat combined with Mepitel or (3) Mepilex Ag. A minimum of 28 participants will be recruited for each treatment group. Primary measures of pain, distress and healing will be repeated at each dressing change until complete wound re-epithelialisation occurs or skin grafting is required. Additional data collected will include infection status at each dressing change, physical function, scar outcome and scar management requirements, cost effectiveness of each dressing and staff perspectives of the dressings. DISCUSSION: The results of this study will determine the effects of three commonly used silver and silicone burn dressing combinations on the rate of wound re-epithelialisation and pain experienced during dressing procedures in acute, paediatric partial thickness burn injuries. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry ACTRN12613000105741.