943 resultados para metal ion chelation
Resumo:
Statement of problem. There are no established clinical procedures for bonding zirconia to tooth structure using resin cements. Purpose. The purpose of this study was to evaluate the influence of metal primers, resin cements, and aging on bonding to zirconia. Material and methods. Zirconia was treated with commercial primers developed for bonding to metal alloys (Metaltite, Metal Primer II, Alloy Primer or Totalbond). Non-primed specimens were considered as controls. One-hundred disk-shaped specimens (19 x 4 mm) were cemented to composite resin substrates using Panavia or RelyX Unicem (n=5). Microtensile bond strength specimens were tested after 48 hours and 5 months (150 days), and failure modes were classified as type 1 (between ceramic/cement), 2 (between composite resin/cement) or 3 (mixed). Data were analyzed by 3-way ANOVA and Multiple Comparison Tukey test (alpha=.05). Results. The interactions primer/luting system (P=.016) and luting system/storage time (P=.004) were statistically significant. The use of Alloy Primer significantly improved the bond strength of RelyX Unicem (P<.001), while for Panavia, none of the primers increased the bond strength compared to the control group. At 48 hours, Panavia had statistically higher bond strength (P=.004) than Unicem (13.9 +/- 4.4MPa and 10.2 +/- 6.6MPa, respectively). However, both luting systems presented decreasing, statistically similar; values after aging (Panavia: 3.6 +/- 2.2MPa; Unicem: 6.1 +/- 5.3MPa). At 48 hours, Alloy Primer/Unicem had the lowest incidence of type 1 failure (8%). After aging, all the groups showed a predominance of type 1 failures. Conclusions. The use of Alloy Primer improved bond strength between RelyX Unicem and zirconia. Though the initial values obtained with Panavia were significantly higher than RelyX Unicem, after aging, both luting agents presented statistically similar performances. (J Prosthet Dent 2011;105:296-303)
Resumo:
The objective of this study was to evaluate the effect of the ion exchange treatment on the R-curve behavior of a leucite-reinforced dental porcelain, testing the hypothesis that the ion exchange is able to improve the R-curve behavior of the porcelain studied. Porcelain disks were sintered, finely polished, and submitted to an ion exchange treatment with a KNO(3) paste. The R-curve behavior was assessed by fracturing the specimens in a biaxial flexure design after making Vickers indentations in the center of the polished surface with loads of 1.8, 3.1, 4.9, 9.8, 31.4, and 49.0 N. The results showed that the ion exchange process resulted in significant improvements in terms of fracture toughness and flexural strength as compared to the untreated material. Nevertheless, the rising R-curve behavior previously observed in the control group disappeared after the ion exchange treatment, i.e., fracture toughness did not increase with the increase in crack size for the treated group.
Resumo:
The objective of this study was to determine the influence of different ion-exchange temperatures on the biaxial flexural strength (sigma(f)), hardness (HV) and indentation fracture resistance (K(IF)) of a dental porcelain. Disk-shaped specimens were divided into five groups (n = 10) and submitted to an ion-exchange procedure using KNO(3) paste for 15 min in the following temperatures (degrees C); (I) 430; (II) 450; (III) 470; (IV) 490; (V) 510; and control (no ion exchange). The value of sigma(f) was determined in artificial saliva at 37 degrees C. The values of HV and K(IF) were obtained using 3 Vickers indentations in each specimen (19.6 N). Results showed that ion exchange increases significantly the properties of the material as compared to the control and no significant differences were found among the temperatures tested for any of the properties studied. (C) 2010 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
The objective of this study was to verify the influence of photoactivation with the argon ion laser on shrinkage stress (SS), followed by evaluation of Vickers microhardness (VM), percentage of maximum hardness (PMH), flexural strength (FS), and flexural modulus (FM) of a composite resin. The study groups were: L1-laser at 200 mW for 10 seconds; L2-laser at 200 mW for 20 seconds; L3-laser at 250 mW for 10 seconds; L4-laser at 250 mW for 20 seconds; H-halogen light at 275 mW for 20 seconds. Data were analyzed by ANOVA/Tukey`s test (alpha=5%). The values of SS (MPa) were statistically lower for the group L3 (1.3)c, followed by groups L1 (2.7)b, L4 (3.4)a, b, L2 (3.7)a, and H (4.5)a. There was no difference in the values of VM when the same time of photoactivation was used, with respective values being L1=70.1a, L2=78.1b, L3=69.9a, L4=78.1b and H=79.9b. All groups showed a PMH of at least 80%. Only the group L1 showed differences in FS (MPa) and FM (GPa), the respective values of 86.2 and 5.4 being lower. Therefore, the use of argon ion laser had influenced the composite resin polymerization. The L3 group presented adequate mechanical properties and minimum SS, reducing the clinical working time for photoactivation of restorations with the tested resin by 50%.
Resumo:
Objectives. To determine the effect of ion exchange on slow crack growth (SCG) parameters (n, stress corrosion susceptibility coefficient, and sigma(f0), scaling parameter) and Weibull parameters (m, Weibull modulus, and sigma(0), characteristic strength) of a dental porcelain. Methods. 160 porcelain discs were fabricated according to manufacturer`s instructions, polished through 1 mu m and divided into two groups: GC (control) and GI (submitted to an ion exchange procedure using a KNO(3) paste at 470 degrees C for 15 min). SCG parameters were determined by biaxial flexural strength test in artificial saliva at 37 degrees C using five constant stress rates (n =10). 20 specimens of each group were tested at 1 MPa/s to determine Weibull parameters. The SPT diagram was constructed using the least-squares fit of the strength data versus probability of failure. Results. Mean values of m and sigma(0) (95% confidence interval), n and sigma(f0) (standard deviation) were, respectively: 13.8 (10.1-18.8) and 60.4 (58.5 - 62.2), 24.1 (2.5) and 58.1 (0.01) for GC and 7.4 (5.3 -10.0) and 136.8 (129.1-144.7), 36.7 (7.3) and 127.9 (0.01) for GI. Fracture stresses (MPa) calculated using the SPT diagram for lifetimes of 1 day, 1 year and 10 years (at a 5% failure probability) were, respectively, 31.8, 24.9 and 22.7 for GC and 71.2, 60.6 and 56.9 for GI. Significance. For the porcelain tested, the ion exchange process improved strength and resistance to SCG, however, the material`s reliability decreased. The predicted fracture stress at 5% failure probability for a lifetime of 10 years was also higher for the ion treated group. (C) 009 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Acidic soft drinks are potentially erosive for dental hard tissues. This in vitro study evaluated the effect of calcium, fluoride, iron and phosphate, supplemented alone or in combination to a commercial citric acid-based carbonated beverage on dental erosion. Ninety enamel samples (4 x 4 x 3 mm) were randomly allocated to nine groups (n = 10): G1 - pure beverage (control); G2 - with 1 mM Ca; G3 - with 0.047 mM F; G4 - with 1 mM Fe; G5 - with 1 mM P; G6 - with 1 mM Ca and 0.047 mM F; G7 - with 1 mM Ca and 1 mM P; G8 - with 1 mM Fe and 0.047 mM F; and G9 - with 1 mM Ca, 1 mM P, 0.047 mM F and 1.0 mM Fe. The samples were subjected to six pH cycles over a 24-h period. In each cycle, the samples were immersed in pure or modified beverage (1 min) and in artificial saliva (59 min). During the remaining period (18 h), the samples were maintained in artificial saliva. Enamel loss was assessed by profilometry (mm). Data were tested using ANOVA and Tukey`s tests (p < 0.05). Highest enamel losses were observed in the control group (G1) and in the groups containing Fe (G4 and G8). The groups containing Ca (G2 and G6) showed significantly less wear compared to control. In conclusion, the modification of an erosive soft drink with low concentrations of Ca with or without F may reduced its erosive potential.
Resumo:
Introduction: An experimental mineral trioxide aggregate sealer (MTAS) has been developed for use as a root canal sealer. The aim of this study was to evaluate the setting time, pH, and calcium ion release of MTAS compared with white Portland cement (CPB-40; Votorantin Cimentos, Camargo Correa SA, Pedro Leopoldo, MG, Brazil), white MTA Angelus (MTA; Angelus, Londrina, PR, Brazil), and AH Plus (Dentsply DeTrey, Konstanz, Germany). Methods: For the evaluation of setting time, each material was analyzed using Gilmore-type needles. Polyethylene tubes with the materials were immersed in distilled water for the measurement of pH (digital pH meter) and calcium release (atomic absorption spectrophotometry). The evaluations were performed at 3, 6, 12, 24, and 48 hours and 7, 14, and 28 days. Data were analyzed by analysis of variance and the Tukey test at 5% significance level. Results: MTAS showed higher calcium release at all experimental periods, a greater increase in pH up to 48 hours and the longest setting time. Conclusions: MTAS presented favorable properties for its indication as a root canal sealer. (J Endod 2011;37:844-846)
Resumo:
Introduction: To evaluate calcium ion release and pH of Sealer 26 (S26) (Dentsply, Rio de Janeiro, RJ, Brazil), white mineral trioxide aggregate (MTA), Endo CPM Sealer (CPM1) (EGEO SRL Bajo licencia MTM Argentina SA, Buenos Aires, Argentina), Endo CPM Sealer in a thicker consistency (CPM 2), and zinc oxide and eugenol cement (ZOE). Methods: Material samples (n = 10) were placed in polyethylene tubes and immersed in 10 mL of distilled water. After 3, 6,12,24, and 48 hours and 7,14, and 28 days, the water pH was determined with a pH meter, and calcium release was assessed by atomic absorption spectrophotometry. An empty tube was used as the control group. Results: The control group presented a pH value of 6.9 at all studied periods and did not show the presence of calcium ion. S26 presented greater hydroxyl ion release up to 12 hours (p < 0.05). From 24 hours until 28 days, S26, MTA, CPM1, and CPM2 had similar results. in ail periods, ZOE presented the lowest hydroxyl ion release. CPM1, followed by CPM2, released the most calcium ions until 24 hours (p < 0.05). Between 48 hours and 7 days, CPM1 and CPM2 had the highest release. A greater calcium ion release was observed for CPM2, followed by CPM1 at 14 days and for S26, CPM1, and CPM2 at 28 days. ZOE released the least calcium ions in all periods. Conclusion: Sealer 26, MTA, and Endo CPM sealer at normal or thicker consistency release hydroxyl and calcium ions. Endo CPM sealer may be an alternative as root-end filling material. (J Endod 2009;35:1418-1421)
Resumo:
Objective. The purpose of this study was to evaluate the pH and calcium ion release of 6 materials used for root-end filling and perforation repair. Study design. Gray ProRoot MTA, gray MTA-Angelus, white MTA-Angelus, and CPM were compared to 2 experimental ones: MTA-exp, also based in Portland cement with a modified mixing liquid, and MBPc, an epoxy-resin based cement containing calcium hydroxide. After 3, 24, 72, and 168 hours the water in which each sample had been immersed was tested to determine the ph and calcium ion release. Results. All the analyzed materials showed alkaline pH and capacity to release calcium ions; however, a tendency of reduction of these characteristics was noted for all the analyzed materials, except for the MBPc, which showed a slight increase of pH among the 3 initial periods. Conclusion. The results suggest that all materials investigated presented alkaline pH and ability of release of calcium ions. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009; 108: 135-139)
Resumo:
This study evaluated the effect of framework design on the fracture resistance of metal-ceramic implant-supported crowns. Screw-retained molar crowns with a screw access hole composed of metal or porcelain were compared to a cement-retained crown (control). For each group (n = 10), five crowns were subjected to dynamic loading (1,200,000 x 100 N x 2 Hz at 37 degrees C). Afterward, all specimens were loaded to failure using a universal testing machine. Significant differences could be established between the cement-and screw-retained groups (P <= .05), but no difference was found between the screw-retained groups and the specimens subjected to dynamic loading. Occlusal discontinuity of screw-retained crowns affects their resistance, and the metallic support on the screw access hole did not reinforce the crowns. Int J Prosthodont 2010;23:350-352.
Evaluation of pH and Calcium Ion Release of Calcium Hydroxide Pastes Containing Different Substances
Resumo:
Introduction: The objective of this study was to evaluate the pH and calcium ion release of calcium hydroxide pastes associated with different substances. Methods: Forty acrylic teeth with simulated root canals were divided into 4 groups according to the substance associated to the calcium hydroxide paste: chlorhexidine (CHX) in 2 formulations (1% solution and 2% gel), Casearia sylvestris Sw extract, and propylene glycol (control). The teeth with pastes and sealed coronal accesses were immersed in 10 mL deionized water. After 10 minutes, 24 hours, 48 hours, and 7, 15, and 30 days, the teeth were removed to another container, and the liquid was analyzed. Calcium ion release was measured by atomic absorption spectrophotometry, and pH readings were made with a pH meter. Data were analyzed statistically by analysis of variance and Tukey test (alpha = 0.05). Results: Calcium analysis revealed significant differences (P < .05) for 1% CHX solution and 2% CHX gel at 10 minutes. After 24 hours, 2% CHX gel x Control and 2% CHX gel x 1% CHX solution differed significantly (P < .05). After 48 hours, there were significant differences (P < .05) for 2% CHX gel x Control and Extract x Control. No differences (P > .05) were observed among groups in the other periods. Regarding the pH, there were significant differences (P < .05) for 2% CHX gel x Control and 2% CHX gel x 1% CHX solution after 48 hours and for 2% CHX gel x Control after 15 days. In the other periods, no differences (P > .05) were observed among groups. Conclusions: All pastes behaved similarly in terms of pH and calcium ion release in the studied periods. (J Endod 2009;35:1274-1277)
Resumo:
P>Aim To assess the physicochemical properties and the surface morphology of AH Plus, GuttaFlow, RoekoSeal and Activ GP root canal sealers. Methodology Five samples of each material were evaluated for setting time, dimensional alteration, solubility and radiopacity tests, according to ANSI/ADA Specification 57. A total of 50 mL of deionized distilled water from the solubility tests were used to measure the metal solubility by atomic absorption spectrometry. The morphologies of the external surface and the cross-section of the samples were analysed by means of a scanning electron microscope (SEM). Statistical analysis was performed by using one-way anova and post hoc Tukey-Kramer tests with the null hypothesis set as 5%. Results AH Plus had the longest setting time (580.6 +/- 3.05 min) (P < 0.05). Activ GP did not have a mean value on the radiopacity and solubility tests (1.31 +/- 0.35 mm and 11.8 +/- 0.43%, respectively) in accordance with ANSI/ADA, being significantly different from the other materials (P < 0.05), which had mean values for these tests in accordance with the ADA`s requirements. GuttaFlow was the only sealer that conformed to the Specification 57 concerning the dimensional alteration test (0.44 +/- 0.16%) (P < 0.05). The spectrometry test revealed significant Ca2+, K+, Zn2+ ion release from Activ GP sealer (32.57 +/- 5.0, 1.57 +/- 0.22 and 8.20 +/- 1.74 mu g mL-1, respectively). In SEM analysis, the loss of matrix was evident and the filler particles were more distinguishable in all groups. Conclusions The setting time of all sealers was in accordance with ANSI/ADA`s requirements. Activ GP did not fulfill ANSI/ADA`s protocols regarding radiopacity, dimensional alteration and solubility. GuttaFlow was the only sealer that conformed to the Specification 57 in all tests. SEM analysis revealed that the surfaces of all sealers had micromorphological changes after the solubility test.
Resumo:
Statement of problem. Dental fractures can occur in endodontically treated teeth restored with posts. Purpose. The purpose of this study was to evaluate the in vitro fracture resistance of roots with glass-fiber and metal posts of different lengths. Material and methods. Sixty endodontically treated maxillary canines were embedded in acrylic resin, except for 4 mm of the cervical area, after removing the clinical crowns. The post spaces were opened with a cylindrical bur at low speed attached to a surveyor, resulting in preparations with lengths of 6 mm (group 6 mm), 8 mm (group 8 mm), or 10 mm (group 10 mm). Each group was divided into 2 subgroups according to the post material: cast post and core or glass-fiber post (n=30). The posts were luted with dual-polymerizing resin cement (Panavia F). Cast posts and cores of Co-Cr (Resilient Plus) crowns were made and cemented with zinc phosphate. Specimens were subjected to increasing compressive load (N) until fracture. Data were analyzed with 2-way ANOVA and the Tukey-Kramer test (alpha=.05). Results. The ANOVA analysis indicated significant differences (P<.05) among the groups, and the Tukey test revealed no significant difference among the metal posts of 6-mm length (26.5 N +/- 13.4), 8-mm length (25.2 N +/- 13.9), and 10-mm length (17.1 N +/- 5.2). Also, in the glass-fiber post group, there was no significant difference when posts of 8-mm length (13.4 N +/- 11.0) were compared with the 6-mm (6.9 N +/- 4.6) and 10-mm (31.7 N +/- 13.1) groups. The 10-mm-long post displayed superior fracture resistance, and the 6-mm-long post showed significantly lower mean values (P<.001). Conclusions. Within the limitations of this study, it was concluded that the glass-fiber post represents a viable alternative to the cast metal post, increasing the resistance to fracture of endodontically treated canines. (J Prosthet Dent 2009;101:183-188)
Resumo:
I Vasorelaxant properties of three nitric oxide (NO) donor drugs (glyceryl trinitrate, sodium nitroprusside and spermine NONOate) in mouse aorta (phenylephrine pre-contracted) were compared with those of endothelium-derived NO (generated with acetylcholine), NO free radical (NO; NO gas solution) and nitroxyl ion (NO-; from Angeli's salt). 2 The soluble guanylate cyclase inhibitor, ODQ (1H-(1,2,4-)oxadiazolo(4,3-a)-quinoxalin-1-one; 0.3, 1 and 10 muM), concentration-dependently inhibited responses to all agents. 10 muM ODQ abolished responses to acetylcholine and glyceryl trinitrate, almost abolished responses to sodium nitroprusside but produced parallel shifts (to a higher concentration range; no depression in maxima) in the concentration-response curves for NO gas solution, Angeli's salt and spermine NONOate. 3 The NO scavengers, carboxy-PTIO, (2-(4-carboxyphenyl)-4,4,5,5-tetramethyl-indazoline-1-oxyl-3-oxide; 100 muM) and hydroxocobalamin (100 muM), both inhibited responses to NO gas solution and to the three NO donor drugs, but not Angeli's salt. Hydroxocobalamin, but not carboxy-PTIO, also inhibited responses to acetylcholine. 4 The NO- inhibitor, L-cysteine (3 mm), inhibited responses to Angeli's salt, acetylcholine and the three NO donor drugs, but not NO gas solution. 5 The data suggest that, in mouse aorta, responses to all three NO donors involve (i) activation of soluble guanylate cyclase, but to differing degrees and (ii) generation of both NO and NO-. Glyceryl trinitrate and sodium nitroprusside, which generate NO following tissue bioactivation, have profiles resembling the profile of endothelium-derived NO more than that of exogenous NO. Spermine NONOate, which generates NO spontaneously outside the tissue, was the drug that most closely resembled (but was not identical to) exogenous NO.
Resumo:
1. More than 1300 different mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) cause cystic fibrosis (CF), a disease characterized by deficient epithelial Cl- secretion and enhanced Na+ absorption. The clinical course of the disease is determined by the progressive lung disease. Thus, novel approaches in pharmacotherapy are based primarily on correction of the ion transport defect in the airways. 2. The current therapeutic strategies try to counteract the deficiency in Cl- secretion and the enhanced Na+ absorption. A number of compounds have been identified, such as genistein and xanthine derivatives, which directly activate mutant CFTR. Other compounds may activate alternative Ca2+-activated Cl- channels or basolateral K+ channels, which supply the driving force for Cl- secretion. Apart from that, Na+ channel blockers, such as phenamil and benzamil, are being explored, which counteract the hyperabsorption of NaCl in CF airways. 3. Clinical trials are under way using purinergic compounds such as the P2Y(2) receptor agonist INS365. Activation of P2Y(2) receptors has been found to both activate Cl- secretion and inhibit Na+ absorption. 4. The ultimate goal is to recover Cl- channel activity of mutant CFTR by either enhancing synthesis and expression of the protein or by activating silent CFTR Cl- channels. Strategies combining these drugs with compounds facilitating Cl- secretion and inhibiting Na+ absorption in vivo may have the best chance to counteract the ion transport defect in cystic fibrosis.