930 resultados para mercury remediation
Resumo:
Studies were undertaken to determine the adsorption behavior of α-cypermethrin [R)-α-cyano-3-phenoxybenzyl(1S)-cis- 3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropanecarboxylate, and (S)-α-cyano-3-phenoxybenzyl (1R)-cis-3-(2,2-dichlorovinyl)-2,2- dimethylcyclopropanecarboxylate] in solutions on granules of cork and activated carbon (GAC). The adsorption studies were carried out using a batch equilibrium technique. A gas chromatograph with an electron capture detector (GC-ECD) was used to analyze α-cypermethrin after solid phase extraction with C18 disks. Physical properties including real density, pore volume, surface area and pore diameter of cork were evaluated by mercury porosimetry. Characterization of cork particles showed variations thereby indicating the highly heterogeneous structure of the material. The average surface area of cork particles was lower than that of GAC. Kinetics adsorption studies allowed the determination of the equilibrium time—24 hours for both cork (1–2 mm and 3–4 mm) and GAC. For the studied α-cypermethrin concentration range, GAC revealed to be a better sorbent. However, adsorption parameters for equilibrium concentrations, obtained through the Langmuir and Freundlich models, showed that granulated cork 1–2 mm have the maximum amount of adsorbed α-cypermethrin (qm) (303 μg/g); followed by GAC (186 μg/g) and cork 3-4 mm (136 μg/g). The standard deviation (SD) values, demonstrate that Freundlich model better describes the α-cypermethrin adsorption phenomena on GAC, while α-cypermethrin adsorption on cork (1-2 mm and 3-4 mm) is better described by the Langmuir. In view of the adsorption results obtained in this study it appears that granulated cork may be a better and a cheaper alternative to GAC for removing α-cypermethrin from water.
Resumo:
Aflowinjection squarewave cathodic stripping voltammetric method has been developed for the determination of sertraline in a pharmaceutical preparation. The method shows linearity between peak current intensity and sertraline concentration for the interval between 0.20×10−6 and 1.20×10−6 mol L−1. Limits of detection and quantification were found to be 1.5×10−7 and 5.0×10−7 mol L−1, respectively. Up to 70 samples per hour can be analysed with a good precision (R.S.D. = 2.5%). The proposed method was successfully applied to the determination of sertraline in a commercial product. In the voltammetric determination of sertraline in flow, a high sample rate is obtained at reduced costs, opening the possibility to compete with the chromatographic methods generally used for this analysis.
Exposição ocupacional a mercúrio: associação com a atividade da paraoxonase humana e vitaminas A e E
Resumo:
Mestrado em Segurança e Higiene no Trabalho
Resumo:
The main objective of this research is to exploit the possibility of using an ex situ solvent extraction technique for the remediation of soils contaminated with semi-volatile petroleum hydrocarbons. The composition of the organic phase was chosen in order to form a single phase mixture with an aqueous phase and simultaneously not being disturbed (forming stable emulsions) by the soil particles hauling the contaminants. It should also permit a regeneration of the organic solvent phase. As first, we studied the miscibility domain of the chosen ternary systems constituted by ethyl acetate–acetone–water. This system proved to satisfy the previous requirements allowing for the formation of a single liquid phase mixture within a large spectrum of compositions, and also allowing for an intimate contact with the soil. Contaminants in the diesel range within different functional groups were selected: xylene, naphthalene and hexadecane. The analytical control was done by gas chromatography with FID detector. The kinetics of the extractions proved to be fast, leading to equilibrium after 10 min. The effect of the solid–liquid ratio on the extraction efficiency was studied. Lower S/L ratios (1:8, w/v) proved to be more efficient, reaching recoveries in the order of 95%. The option of extraction in multiple contacts did not improve the recovery in relation to a single contact. The solvent can be regenerated by distillation with a loss around 10%. The contaminants are not evaporated and they remain in the non-volatile phase. The global results show that the ex situ solvent extraction is technically a feasible option for the remediation of semi-volatile aromatic, polyaromatic and linear hydrocarbons.
Resumo:
The electrochemical behaviour of the pesticide metam (MT) at a glassy carbon working electrode (GCE) and at a hanging mercury drop electrode (HMDE) was investigated. Different voltammetric techniques, including cyclic voltammetry (CV) and square wave voltammetry (SWV), were used. An anodic peak (independent of pH) at +1.46 V vs AgCl/Ag was observed in MTaqueous solution using the GCE. SWV calibration curves were plotted under optimized conditions (pH 2.5 and frequency 50 Hz), which showed a linear response for 17–29 mg L−1. Electrochemical reduction was also explored, using the HMDE. A well defined cathodic peak was recorded at −0.72 V vs AgCl/ Ag, dependent on pH. After optimizing the operating conditions (pH 10.1, frequency 150 Hz, potential deposition −0.20 V for 10 s), calibration curves was measured in the concentration range 2.5×10−1 to 1.0 mg L−1 using SWV. The electrochemical behaviour of this compound facilitated the development of a flow injection analysis (FIA) system with amperometric detection for the quantification of MT in commercial formulations and spiked water samples. An assessment of the optimal FIA conditions indicated that the best analytical results were obtained at a potential of +1.30 V, an injection volume of 207 μL and an overall flow rate of 2.4 ml min−1. Real samples were analysed via calibration curves over the concentration range 1.3×10−2 to 1.3 mg L−1. Recoveries from the real samples (spiked waters and commercial formulations) were between 97.4 and 105.5%. The precision of the proposed method was evaluated by assessing the relative standard deviation (RSD %) of ten consecutive determinations of one sample (1.0 mg L−1), and the value obtained was 1.5%.
Resumo:
A detailed study of voltammetric behavior of ethiofencarb (ETF) is reported using glassy carbon electrode (GCE) and hanging mercury drop electrode (HMDE). With GCE, it is possible to verify that the oxidative mechanism is irreversible, independent of pH, and the maximum intensity current was observed at +1.20 V vs. AgCl/Ag at pH 1.9. A linear calibration line was obtained from 1.0x10-4 to 8.0x10-4 mol L-1 with SWV method. To complete the electrochemical knowledge of ETF pesticide, the reduction was also explored with HMDE. A well-defined peak was observed at –1.00V vs. AgCl/Ag in a large range of pH with higher signal at pH 7.0. Linearity was obtained in 4.2x10-6 and 9.4x10-6 mol L-1 ETF concentration range. An immediate alkaline hydrolysis of ETF was executed, producing a phenolic compound (2-ethylthiomethylphenol) (EMP), and the electrochemical activity of the product was examined. It was deduced that it is oxidized on GCE at +0.75V vs. AgCl/Ag with a maximum peak intensity current at pH 3.2, but the compound had no reduction activity on HMDE. Using the decrease of potential peak, a flow injection analysis (FIA) system was developed connected to an amperometric detector, enabling the determination of EMP over concentration range of 1.0x10-7 and 1.0x10-5 mol L-1 at a sampling rate of 60 h-1. The results provided by FIA methodology were performed by comparison with results from high-performance liquid chromatography (HPLC) technique and demonstrated good agreement with relative deviations lower than 4%. Recovery trials were performed and the obtained values were between 98 and 104%.
Resumo:
An electrochemical method is proposed for the determination of maltol in food. Microwave-assisted extraction procedures were developed to assist sample pre-treating steps. Experiments carried out in cyclic voltammetry showed an irreversible and adsorption controlled reduction of maltol. A cathodic peak was observed at -1.0 V for a Hanging Mercury Drop Electrode versus an AgCl/Ag (in saturated KCl), and the peak potential was pH independent. Square wave voltammetric procedures were selected to plot calibration curves. These procedures were carried out with the optimum conditions: pH 6.5; frequency 50 Hz; deposition potential 0.6 V; and deposition time 10 s. A linear behaviour was observed within 5.0 × 10-8 and 3.5 × 10-7 M. The proposed method was applied to the analysis of cakes, and results were compared with those obtained by an independent method. The voltammetric procedure was proven suitable for the analysis of cakes and provided environmental and economical advantages, including reduced toxicity and volume of effluents and decreased consumption of reagents.
Resumo:
An optical fiber sensor for Hg(II) in aqueous solution based on sol–gel immobilized carbon dots nanoparticles functionalized with PEG200 and N-acetyl-l-cysteine is described. This sol–gel method generated a thin (about 750 nm), homogenous and smooth (roughness of 2.7±0.7 a˚ ) filmthat immobilizes the carbon dots and allows reversible sensing of Hg(II) in aqueous solution. A fast (less than 10 s), reversible and stable (the fluorescence intensity measurements oscillate less than 1% after several calibration cycles) sensor system was obtained. The sensor allow the detection of submicron molar concentrations of Hg(II) in aqueous solution. The fluorescence intensity of the immobilized carbon dots is quenched by the presence of Hg(II) with a Stern-Volmer constant (pH = 6.8) of 5.3×105M−1.
Resumo:
Soil vapor extraction (SVE) and bioremediation (BR) are two of the most common soil remediation technologies. Their application is widespread; however, both present limitations, namely related to the efficiencies of SVE on organic soils and to the remediation times of some BR processes. This work aimed to study the combination of these two technologies in order to verify the achievement of the legal clean-up goals in soil remediation projects involving seven different simulated soils separately contaminated with toluene and xylene. The remediations consisted of the application of SVE followed by biostimulation. The results show that the combination of these two technologies is effective and manages to achieve the clean-up goals imposed by the Spanish Legislation. Under the experimental conditions used in this work, SVE is sufficient for the remediation of soils, contaminated separately with toluene and xylene, with organic matter contents (OMC) below 4 %. In soils with higher OMC, the use of BR, as a complementary technology, and when the concentration of contaminant in the gas phase of the soil reaches values near 1 mg/L, allows the achievement of the clean-up goals. The OMC was a key parameter because it hindered SVE due to adsorption phenomena but enhanced the BR process because it acted as a microorganism and nutrient source.
Resumo:
Gallinaceous feathers are an abundant solid waste from the poultry processing industries, which poses disposal problems. A kinetic study dealing with the adsorption process of wool reactive dye, Yellow Lanasol 4G (CI Reactive Yellow 39), on gallinaceous (Gallus gallus, Cobb 500) feathers was carried out. The main research goals of this work were to evaluate the viability of using this waste as adsorbent and to study the kinetics of the adsorption process, using a synthetic effluent. The characterization of feathers was performed by scanning electron microscopy, mercury porosimetry and B.E.T. method. The study of several factors (stirring, particles size, initial dye concentration and temperature) showed their influence over the adsorption process. An adapted version of the Schumckler and Goldstein´s unreacted core model fitted the experimental data. The best fit was obtained when the rate-limiting step was the diffusion through the reacted layer, which was expected considering the size of the dyestuff molecules. The comparison with the granular activated carbon (GAC) Sutcliffe GAC 10-30 indicate that in spite of the high adsorption capacities shown by feathers the GAC presented higher values, the values obtained were respectively 150 and 219 mg g-1, for an initial concentration of 500 mg L-1. The results obtained might open future perspectives both to the valorization of feathers and to the economical treatment of textile wastewaters.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Civil
Resumo:
O recente surgimento de nanopartículas de ferro valente-zero (nFZV), um material com elevada capacidade de remediação de solos por via de reacções de oxidação/redução pode ser uma opção viável para a remoção de fármacos do solo. A sua aplicação já é uma realidade em alguns tipos de solos contaminados por compostos específicos e, com este trabalho, procura-se estudar a sua capacidade de remediação de solos contaminados por compostos farmacêuticos, recorrendo-se a uma tecnologia “verde” de síntese destas nanopartículas. Esta tecnologia é bastante recente, ainda não aplicada no campo de trabalho, que se baseia no uso de folhas de certas árvores para produzir extratos naturais que reduzem o ferro (III) a ferro zero valente, formando nFZV. Desta forma procedeu-se, à escala laboratorial, ao estudo da eficiência das nFZV na degradação de um fármaco – paracetamol – e comparou-se com a eficiência demonstrada por oxidantes, muito utilizados hoje em dia em casos de remediação in situ como o permanganato de potássio, o peróxido de hidrogénio, o persulfato de sódio e o reagente de Fenton. O estudo foi efectuado em dois meios diferentes: solução aquosa e solo arenoso. De forma muito sucinta, o estudo baseou-se na introdução dos oxidantes/nFZV em soluções/solos contaminados com paracetamol e consequente monitorização do processo de remediação através de cromatografia líquida de alta eficiência. Nos ensaios com soluções aquosas contaminadas com paracetamol, o permanganato de potássio e o reagente de Fenton revelaram capacidade para degradar o paracetamol, atingindo mesmo um grau de degradação de 100%. O persulfato de sódio também demonstrou uma capacidade de degradação do paracetamol, chegando a atingir 99% de degradação, mas apenas recorrendo ao uso de um volume de oxidante elevado quando comparado com os outros dois oxidantes já referidos. Por outro lado, o peróxido de hidrogénio não demonstrou qualquer capacidade de degradação do paracetamol, pelo que o seu uso não passou desta fase. Verificou-se também que o uso de ferro granulado para o tratamento de água contaminada com paracetamol revelou resultados diferentes dos observados no uso de nFZV, obtendo-se eficiências de 87%. Existiram dificuldades analíticas na quantificação do paracetamol, especificamente relacionadas com o uso do extracto de folhas de amoreira, cuja composição continha substâncias que causaram dificuldades acentuadas na análise dos cromatogramas. Por fim, um pequeno teste de combinação do reagente de Fenton com os fenómenos de biodegradação resultantes dos microrganismos presentes em folhas do extracto de chá preto demonstrou que este pode ser uma área que pode e deve ser mais estudada. Desta forma, a utilização das nFZV para o tratamento de água contaminada com paracetamol não permitiu a retirada de conclusões seguras sobre a capacidade que as nFZV produzidas com extractos de folhas de amoreira e de chá preto têm de degradação do paracetamol. Nos testes de remediação de solos contaminados os resultados demonstraram que, mais uma vez, tanto o permanganato de potássio como o reagente de Fenton se revelam como os melhores oxidantes para a degradação do paracetamol, obtendo-se a degradação total do paracetamol. Por outro lado, voltou a ser necessário uma elevada quantidade de persulfato de sódio quando comparada com os dois anteriores, para que ocorra a degradação desta mesma quantidade de paracetamol, demonstrando mais uma vez que, apesar de não ideal, o persulfato demonstra capacidade de degradação do paracetamol.
Resumo:
The industrial activity is inevitably associated with a certain degradation of the environmental quality, because is not possible to guarantee that a manufacturing process can be totally innocuous. The eco-efficiency concept is globally accepted as a philosophy of entreprise management, that encourages the companies to become more competitive, innovative and environmentally responsible by promoting the link between its companies objectives for excellence and its objectives of environmental excellence issues. This link imposes the creation of an organizational methodology where the performance of the company is concordant with the sustainable development. The main propose of this project is to apply the concept of eco-efficiency to the particular case of the metallurgical and metal workshop industries through the development of the particular indicators needed and to produce a manual of procedures for implementation of the accurate solution.
Resumo:
Self-compacting concrete (SCC) can soon be expected to replace conventional concrete due to its many advantages. Its main characteristics in the fresh state are achieved essentially by a higher volume of mortar (more ultrafine material) and a decrease of the coarse-aggregates. The use of over-large volumes of additions such as fly ash (FA) and/or limestone filler (LF) can substantially affect the concrete's pore structure and consequently its durability. In this context, an experimental programme was conducted to evaluate the effect on the concrete's porosity and microstructure of incorporating FA and LF in binary and ternary mixes of SCC. For this, a total of 11 SIX mixes were produced; 1 with cement only (C); 3 with C + FA in 30%, 60% and 70% substitution (fad); 3 with C + LF in 30%, 60% and 70% fad; 4 with C + FA + LF in combinations of 10-20%, 20-10%, 20-40% and 40-20% f(ad), respectively. The results enabled conclusions to be established regarding the SCC's durability, based on its permeability and the microstructure of its pore structure. The properties studied are strongly affected by the type and quantity of additions. The use of ternary mixes also proves to be extremely favourable, confirming the beneficial effect of the synergy between these additions. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Abstract Self-compacting concrete (SCC) can soon be expected to replace conventional concrete due to its many advantages. Its main characteristics in the fresh state are achieved essentially by a higher volume of mortar (more ultrafine material) and a decrease of the coarse-aggregates. The use of over-large volumes of additions such as fly ash (FA) and/or limestone filler (LF) can substantially affect the concrete's pore structure and consequently its durability. In this context, an experimental programme was conducted to evaluate the effect on the concrete's porosity and microstructure of incorporating FA and LF in binary and ternary mixes of SCC. For this, a total of 11 SCC mixes were produced: 1 with cement only (C); 3 with C + FA in 30%, 60% and 70% substitution (fad); 3 with C + LF in 30%, 60% and 70% fad; 4 with C + FA + LF in combinations of 10-20%, 20-10%, 20-40% and 40-20% fad, respectively. The results enabled conclusions to be established regarding the SCC's durability, based on its permeability and the microstructure of its pore structure. The properties studied are strongly affected by the type and quantity of additions. The use of ternary mixes also proves to be extremely favourable, confirming the beneficial effect of the synergy between these additions. © 2015 Elsevier Ltd. All rights reserved.