795 resultados para maternal directiveness and developmental delays
Resumo:
We investigated attention, encoding and processing of social aspects of complex photographic scenes. Twenty-four high-functioning adolescents (aged 11–16) with ASD and 24 typically developing matched control participants viewed and then described a series of scenes, each containing a person. Analyses of eye movements and verbal descriptions provided converging evidence that both groups displayed general interest in the person in each scene but the salience of the person was reduced for the ASD participants. Nevertheless, the verbal descriptions revealed that participants with ASD frequently processed the observed person’s emotion or mental state without prompting. They also often mentioned eye-gaze direction, and there was evidence from eye movements and verbal descriptions that gaze was followed accurately. The combination of evidence from eye movements and verbal descriptions provides a rich insight into the way stimuli are processed overall. The merits of using these methods within the same paradigm are discussed.
Resumo:
XPD functions in transcription, DNA repair and in cell cycle control. Mutations in human XPD (also known as ERCC2) mainly cause three clinical phenotypes: xeroderma pigmentosum (XP), Cockayne syndrome (XP/CS) and trichothiodystrophy (TTD), and only XP patients have a high predisposition to developing cancer. Hence, we developed a fly model to obtain novel insights into the defects caused by individual hypomorphic alleles identified in human XP-D patients. This model revealed that the mutations that displayed the greatest in vivo UV sensitivity in Drosophila did not correlate with those that led to tumor formation in humans. Immunoprecipitations followed by targeted quantitative MS/MS analysis showed how different xpd mutations affected the formation or stability of different transcription factor IIH (TFIIH) subcomplexes. The XP mutants most clearly linked to high cancer risk, Xpd R683W and R601L, showed a reduced interaction with the core TFIIH and also an abnormal interaction with the Cdk-activating kinase (CAK) complex. Interestingly, these two XP alleles additionally displayed high levels of chromatin loss and free centrosomes during the rapid nuclear division phase of the Drosophila embryo. Finally, the xpd mutations showing defects in the coordination of cell cycle timing during the Drosophila embryonic divisions correlated with those human mutations that cause the neurodevelopmental abnormalities and developmental growth defects observed in XP/CS and TTD patients.
Resumo:
Systematic reviews and meta-analyses allow for a more transparent and objective appraisal of the evidence. They may decrease the number of false-negative results and prevent delays in the introduction of effective interventions into clinical practice. However, as for any other tool, their misuse can result in severely misleading results. In this article, we discuss the main steps that should be taken when conducting systematic reviews and meta-analyses, namely the preparation of a review protocol, identification of eligible trials, and data extraction, pooling of treatment effects across trials, investigation of potential reasons for differences in treatment effects across trials, and complete reporting of the review methods and findings. We also discuss common pitfalls that should be avoided, including the use of quality assessment tools to derive summary quality scores, pooling of data across trials as if they belonged to a single large trial, and inappropriate uses of meta-regression that could result in misleading estimates of treatment effects because of regression to the mean or the ecological fallacy. If conducted and reported properly, systematic reviews and meta-analyses will increase our understanding of the strengths and weaknesses of the available evidence, which may eventually facilitate clinical decision making.
Resumo:
We tested a core assumption of the bidirectional model of executive function (EF) (Blair & Ursache, 2011) indicating that EF is dependent on arousal. From a bottom-up perspective the performance on EF tasks is assumed to be curvilinearly related to arousal, with very high or low levels of arousal impairing EF. N = 107 4-and 6-year-olds’ performance on EF tasks was explored as a function of a weak stress manipulation aiming to raise children’s emotional arousal. EF (Stroop, Flanker, Go/no-go, and Backwards Color Recall) was assessed and stress was induced in half of the children by imposing a mild social evaluative threat. Furthermore, children’s temperament was assessed as a potential moderator. We found that stress effects on children’s EF performance were moderated by age and temperament: 4-year-olds with high Inhibitory Control and high Attentional Focusing were negatively affected by the stressor. However, it is unclear whether these effects were mediated by self-reported arousal. Our findings disconfirmed the hypotheses that adverse effects of the stressor are particularly high in children high on emotional reactivity aspects of temperament and low on self-regulatory aspects of temperament. Further, 6-year-olds did not show any stress effects. Results will be discussed within the framework of the Yerkes-Dodson law and with regard to stress manipulations in children.
Development of meta-representations: Procedural metacognition and the relationship to Theory of Mind
Resumo:
In several studies it was shown that metacognitive ability is crucial for children and their success in school. Much less is known about the emergence of that ability and its relationship to other meta-representations like Theory of Mind competencies. In the past years, a growing literature has suggested that metacognition and Theory of Mind could theoretically be assumed to belong to the same developmental concept. Since then only a few studies showed empirically evidence that metacognition and Theory of Mind are related. But these studies focused on declarative metacognitive knowledge rather than on procedural metacognitive monitoring like in the present study: N = 159 children were first tested shortly before making the transition to school (aged between 5 1/2 and 7 1/2 years) and one year later at the end of their first grade. Analyses suggest that there is in fact a significant relation between early metacognitive monitoring skills (procedural metacognition) and later Theory of Mind competencies. Notably, language seems to play a crucial role in this relationship. Thus our results bring new insights in the research field of the development of meta-representation and support the view that metacognition and Theory of Mind are indeed interrelated, but the precise mechanisms yet remain unclear.
Resumo:
• Premise of the study: Isometric and allometric scaling of a conserved floral plan could provide a parsimonious mechanism for rapid and reversible transitions between breeding systems. This scaling may occur during transitions between predominant autogamy and xenogamy, contributing to the maintenance of a stable mixed mating system. • Methods: We compared nine disjunct populations of the polytypic, mixed mating species Oenothera flava (Onagraceae) to two parapatric relatives, the obligately xenogamous species O. acutissima and the mixed mating species O. triloba. We compared floral morphology of all taxa using principal component analysis (PCA) and developmental trajectories of floral organs using ANCOVA homogeneity of slopes. • Key results: The PCA revealed both isometric and allometric scaling of a conserved floral plan. Three principal components (PCs) explained 92.5% of the variation in the three species. PC1 predominantly loaded on measures of floral size and accounts for 36% of the variation. PC2 accounted for 35% of the variation, predominantly in traits that influence pollinator handling. PC3 accounted for 22% of the variation, primarily in anther–stigma distance (herkogamy). During O. flava subsp. taraxacoides development, style elongation was accelerated relative to anthers, resulting in positive herkogamy. During O. flava subsp. flava development, style elongation was decelerated, resulting in zero or negative herkogamy. Of the two populations with intermediate morphology, style elongation was accelerated in one population and decelerated in the other. • Conclusions: Isometric and allometric scaling of floral organs in North American Oenothera section Lavauxia drive variation in breeding system. Multiple developmental paths to intermediate phenotypes support the likelihood of multiple mating system transitions.
Resumo:
Modern concepts for the treatment of myocardial diseases focus on novel cell therapeutic strategies involving stem cell-derived cardiomyocytes (SCMs). However, functional integration of SCMs requires similar electrophysiological properties as primary cardiomyocytes (PCMs) and the ability to establish intercellular connections with host myocytes in order to contribute to the electrical and mechanical activity of the heart. The aim of this project was to investigate the properties of cardiac conduction in a co-culture approach using SCMs and PCMs in cultured cell strands. Murine embryonic SCMs were pooled with fetal ventricular cells and seeded in predefined proportions on microelectrode arrays to form patterned strands of mixed cells. Conduction velocity (CV) was measured during steady state pacing. SCM excitability was estimated from action potentials measured in single cells using the patch clamp technique. Experiments were complemented with computer simulations of conduction using a detailed model of cellular architecture in mixed cell strands. CV was significantly lower in strands composed purely of SCMs (5.5 ± 1.5 cm/s, n = 11) as compared to PCMs (34.9 ± 2.9 cm/s, n = 21) at similar refractoriness (100% SCMs: 122 ± 25 ms, n = 9; 100% PCMs: 139 ± 67 ms, n = 14). In mixed strands combining both cell types, CV was higher than in pure SCMs strands, but always lower than in 100% PCM strands. Computer simulations demonstrated that both intercellular coupling and electrical excitability limit CV. These data provide evidence that in cultures of murine ventricular cardiomyocytes, SCMs cannot restore CV to control levels resulting in slow conduction, which may lead to reentry circuits and arrhythmias.
Resumo:
Traditionally, researchers have discussed executive function and metacognition independently. However, more recently, theoretical frameworks linking these two groups of higher order cognitive processes have been advanced. In this article, we explore the relationship between executive function and procedural metacognition, and summarize theoretical similarities. From a developmental perspective, the assumed theoretical resemblances seem to be supported, considering development trajectories and their substantial impact on areas that include learning and memory. Moreover, empirical evidence suggests direct relationships on the task level, on the level of latent variables, and in terms of involved brain regions. However, research linking the two concepts directly remains rare. We discuss evidence and developmental mechanisms, and propose ways researchers can investigate links between executive function and procedural metacognition.
Resumo:
Maternal thromboembolism and a spectrum of placenta-mediated complications including the pre-eclampsia syndromes, fetal growth restriction, fetal loss, and abruption manifest a shared etiopathogenesis and predisposing risk factors. Furthermore, these maternal and fetal complications are often linked to subsequent maternal health consequences that comprise the metabolic syndrome, namely, thromboembolism, chronic hypertension, and type II diabetes. Traditionally, several lines of evidence have linked vasoconstriction, excessive thrombosis and inflammation, and impaired trophoblast invasion at the uteroplacental interface as hallmark features of the placental complications. "Omic" technologies and biomarker development have been largely based upon advances in vascular biology, improved understanding of the molecular basis and biochemical pathways responsible for the clinically relevant diseases, and increasingly robust large cohort and/or registry based studies. Advances in understanding of innate and adaptive immunity appear to play an important role in several pregnancy complications. Strategies aimed at improving prediction of these pregnancy complications are often incorporating hemodynamic blood flow data using non-invasive imaging technologies of the utero-placental and maternal circulations early in pregnancy. Some evidence suggests that a multiple marker approach will yield the best performing prediction tools, which may then in turn offer the possibility of early intervention to prevent or ameliorate these pregnancy complications. Prediction of maternal cardiovascular and non-cardiovascular consequences following pregnancy represents an important area of future research, which may have significant public health consequences not only for cardiovascular disease, but also for a variety of other disorders, such as autoimmune and neurodegenerative diseases.
Resumo:
Embryonic-maternal interaction from the earliest stages of gestation has a key, sustained role in neurologic development, persisting into adulthood. Early adverse events may be detrimental in adulthood. Protective factors present during gestation could significantly impact post-natal therapy. The role of PreImplantation Factor (PIF) within this context is herein examined. Secreted by viable early embryos, PIF establishes effective embryonic-maternal communication and exerts essential trophic and protective roles by reducing oxidative stress and protein misfolding and by blunting the nocive let-7 microRNA related pathway. PIF's effects on systemic immunity lead to comprehensive immune modulation, not immune suppression. We examine PIF's role in protecting embryos from adverse maternal environment, which can lead to neurological disorders that may only manifest post-nataly: Synthetic PIF successfully translates endogenous PIF features in both pregnant and non-pregnant clinically relevant models. Specifically PIF has neuroprotective effects in neonatal prematurity. In adult relapsing-remitting neuroinflammation, PIF reverses advanced paralysis while promoting neurogenesis. PIF reversed Mycobacterium smegmatis induced brain infection. In graft-vs.-host disease, PIF reduced skin ulceration, liver inflammation and colon ulceration while maintaining beneficial anti-cancer, graft-vs.-leukemia effect. Clinical-grade PIF has high-safety profile even at supraphysiological doses. The FDA awarded Fast-Track designation, and university-sponsored clinical trials for autoimmune disorder are ongoing. Altogether, PIF properties point to its determining regulatory role in immunity, inflammation and transplant acceptance. Specific plans for using PIF for the treatment of complex neurological disorders (ie. traumatic brain injury, progressive paralysis), including neuroprotection from newborn to adult, are presented.
Resumo:
This paper describes the present-day vegetation, stratigraphy and developmental history of the mire of Egelsee-Moor (Salzburg, Austria; 45°45′N, 13°8.5′E, 700 m a.s.l., 15 ha in area) since the early Late Glacial on the basis of 4 transects with 14 trial borings across the peatland. We present a vegetation map of the mire, a longitudinal section through the peat body based on six cores showing the peat types, overview macrofossil diagrams of six cores showing the local mire development and two pollen diagrams covering the Late Glacial and Holocene. The chronology of the diagrams depends on biostratigraphic dating for the Late Glacial and early Holocene and radiocarbon dating for the remaining Holocene. The northern part of the mire originated through terrestrialisation of nutrient-rich, mostly inundated fen and the southern part through paludification of wet soils. The very small lake of today was a reservoir until recently for providing water-power for timber rafting (‘Holztrift’). The mire vegetation today is a complex of forested parts (mainly planted Pinus sylvestris and Thuja occidentalis, but also spontaneous Picea abies, Betula pubescens and Frangula alnus), reed-lands (Phragmites) and litter meadows (Molinietum, Schoenetum, etc.). The central part has hummock-hollow complexes with regionally rare species of transitional mires (Drosera anglica, D. intermedia, Lycopodiella inundata, Scorpidium scorpioides, Sphagnum platyphyllum, S. subnitens). The results indicate that some of the mid-Holocene sediments may have been removed by the timber-rafting practices, and that water extraction from the hydrological catchment since 1967 has resulted in a partial shift of transitional mire to ombrotrophic bog. The latter potentially endangers the regionally rare species and was used as an argument to stop further water extraction.
Resumo:
Little is known about the aetiology of childhood brain tumours. We investigated anthropometric factors (birth weight, length, maternal age), birth characteristics (e.g. vacuum extraction, preterm delivery, birth order) and exposures during pregnancy (e.g. maternal: smoking, working, dietary supplement intake) in relation to risk of brain tumour diagnosis among 7-19 year olds. The multinational case-control study in Denmark, Sweden, Norway and Switzerland (CEFALO) included interviews with 352 (participation rate=83.2%) eligible cases and 646 (71.1%) population-based controls. Interview data were complemented with data from birth registries and validated by assessing agreement (Cohen's Kappa). We used conditional logistic regression models matched on age, sex and geographical region (adjusted for maternal age and parental education) to explore associations between birth factors and childhood brain tumour risk. Agreement between interview and birth registry data ranged from moderate (Kappa=0.54; worked during pregnancy) to almost perfect (Kappa=0.98; birth weight). Neither anthropogenic factors nor birth characteristics were associated with childhood brain tumour risk. Maternal vitamin intake during pregnancy was indicative of a protective effect (OR 0.75, 95%-CI: 0.56-1.01). No association was seen for maternal smoking during pregnancy or working during pregnancy. We found little evidence that the considered birth factors were related to brain tumour risk among children and adolescents.
Resumo:
A developmental-evolutionary perspective is used to synthesize basic research from the neurosciences, ethology, genetics, and developmental psychology into a unified framework for understanding the nature and origins of social anxiety and avoidant personality disorder. Evidence is presented that social anxiety disorder (social phobia) and avoidant personality disorder may be alternate conceptualizations of the same disorder because they have virtually the same symptoms and genetic basis, and respond to the same pharmacologic and psychotherapeutic interventions. A functionalist perspective on social anxiety is formulated to (a) explain the origins of normative states of anxiety, (b) outline developmental pathways in the transition from normative anxiety to social anxiety and avoidant personality disorders, and (c) account for the processes leading to gender-differentiated patterns of anxiety-related disorders after puberty.
Resumo:
Background. Congenital syphilis (CS) is the oldest recognized congenital infection in the world. CS infection can affect multiple organs and can even cause neonatal death. CS is largely preventable when maternal syphilis is treated in an adequate and timely manner. During the decade of the nineties, rates of CS in Texas have often exceeded the overall US rate. Few studies, with adequate sample sizes, have been conducted to determine the risk factors associated with CS while controlling for factors associated with adult (maternal) syphilis infection. Objective. To determine the current maternal risk factors for CS infection in Texas from 1998–2001. Methods. A total of 1083 women with positive serological tests for syphilis during pregnancy or at delivery were reported to, and assessed by, health department surveillance staff. Mothers delivering infants in Texas between January 1, 1998 and June 30, 2001 comprised the study population. Mothers of infants diagnosed with confirmed or presumptive CS (N = 291) were compared to mothers of infants diagnosed as non-cases (N = 792) to determine the risk factors for vertical transmission (while controlling for risk factors of horizontal transmission). Logistic regression analyses were conducted to determine the associated odds between selected maternal variables and the outcome of CS. Results. Among 291 case infants, 5 (1.7%), 12 (4.1%), 274 (94.2%) were classified as confirmed cases, syphilitic stillbirths, and presumptive cases, respectively. Lack of maternal syphilis treatment was the strongest predictor of CS: odds ratio (OR) = 199.57 (95% CI 83.45–477.25) compared to those receiving treatment before pregnancy, while women treated during their pregnancies were also at increased risk (OR = 6.67, 95% CI 4.01–11.08). Women receiving no prenatal care were more likely (OR = 2.77, 95% CI 1.60–4.79) to have CS infants than those receiving prenatal care. Single women had higher odds (OR = 1.90, 95% CI 1.10–3.26) than ever-married women. African-Americans (OR 0.91, 95% CI 0.37–2.23) and Hispanics (OR = 1.66, 95% CI 0.68–4.05) may be more likely to have a CS infant than non-Hispanic Whites. Conclusions. The burden of CS in Texas can be alleviated through the provision of quality health care services, particularly prenatal care and treatment for sexually transmitted diseases. ^
Resumo:
The ability to respond plastically to the environment has allowed amphibians to evolve a response to spatial and temporal variation in predation threat (Benard 2004). Embroys exposed to egg predation are expected to hatch out earlier than their conspecifics. Larval predation can induce a suite of phenotypic changes including growing a larger tail area. When presented with cues from both egg and larval predators, embryos are expected to respond to the egg predator by hatching out earlier because the egg predator presents an immediate threat. However, hatching early may be costly in the larval environment in terms of development, morphology, and/or behavior. We created a laboratory experiment in which we exposed clutches of spotted salamander (Ambystoma maculatum) eggs to both egg (caddisfly larvae) and larval (A. opacum) predators to test this hypothesis. We recorded hatching time and stage and took developmental and morphological data of the animals a week after hatching. Larvae were entered into lethal predation trials with a larval predatory sunfish (Lepomis sp.) in order to study behavior. We found that animals exposed to the egg predator cues hatched out earlier and at earlier developmental stages than conspecifics regardless of whether there was a larval predator present. Animals exposed to larval predator cues grew relatively larger tails and survived longer in the lethal predation trials. However the group exposed to both predators showed a cost of early hatching in terms of lower tail area and shorter survival time in predation trials. The morphological and developmental effects measured of hatching plasticity were transient as there were no developmental or morphological differences between the treatment groups at metamorphosis. Hatching plasticity may be transient but it is important to the development and survival of many amphibians.