867 resultados para least square-support vector machine
Resumo:
The code STATFLUX, implementing a new and simple statistical procedure for the calculation of transfer coefficients in radionuclide transport to animals and plants, is proposed. The method is based on the general multiple-compartment model, which uses a system of linear equations involving geometrical volume considerations. Flow parameters were estimated by employing two different least-squares procedures: Derivative and Gauss-Marquardt methods, with the available experimental data of radionuclide concentrations as the input functions of time. The solution of the inverse problem, which relates a given set of flow parameter with the time evolution of concentration functions, is achieved via a Monte Carlo Simulation procedure.Program summaryTitle of program: STATFLUXCatalogue identifier: ADYS_v1_0Program summary URL: http://cpc.cs.qub.ac.uk/summaries/ADYS_v1_0Program obtainable from: CPC Program Library, Queen's University of Belfast, N. IrelandLicensing provisions: noneComputer for which the program is designed and others on which it has been tested: Micro-computer with Intel Pentium III, 3.0 GHzInstallation: Laboratory of Linear Accelerator, Department of Experimental Physics, University of São Paulo, BrazilOperating system: Windows 2000 and Windows XPProgramming language used: Fortran-77 as implemented in Microsoft Fortran 4.0. NOTE: Microsoft Fortran includes non-standard features which are used in this program. Standard Fortran compilers such as, g77, f77, ifort and NAG95, are not able to compile the code and therefore it has not been possible for the CPC Program Library to test the program.Memory, required to execute with typical data: 8 Mbytes of RAM memory and 100 MB of Hard disk memoryNo. of bits in a word: 16No. of lines in distributed program, including test data, etc.: 6912No. of bytes in distributed Program, including test data, etc.: 229 541Distribution format: tar.gzNature of the physical problem: the investigation of transport mechanisms for radioactive substances, through environmental pathways, is very important for radiological protection of populations. One such pathway, associated with the food chain, is the grass-animal-man sequence. The distribution of trace elements in humans and laboratory animals has been intensively studied over the past 60 years [R.C. Pendlenton, C.W. Mays, R.D. Lloyd, A.L. Brooks, Differential accumulation of iodine-131 from local fallout in people and milk, Health Phys. 9 (1963) 1253-1262]. In addition, investigations on the incidence of cancer in humans, and a possible causal relationship to radioactive fallout, have been undertaken [E.S. Weiss, M.L. Rallison, W.T. London, W.T. Carlyle Thompson, Thyroid nodularity in southwestern Utah school children exposed to fallout radiation, Amer. J. Public Health 61 (1971) 241-249; M.L. Rallison, B.M. Dobyns, F.R. Keating, J.E. Rall, F.H. Tyler, Thyroid diseases in children, Amer. J. Med. 56 (1974) 457-463; J.L. Lyon, M.R. Klauber, J.W. Gardner, K.S. Udall, Childhood leukemia associated with fallout from nuclear testing, N. Engl. J. Med. 300 (1979) 397-402]. From the pathways of entry of radionuclides in the human (or animal) body, ingestion is the most important because it is closely related to life-long alimentary (or dietary) habits. Those radionuclides which are able to enter the living cells by either metabolic or other processes give rise to localized doses which can be very high. The evaluation of these internally localized doses is of paramount importance for the assessment of radiobiological risks and radiological protection. The time behavior of trace concentration in organs is the principal input for prediction of internal doses after acute or chronic exposure. The General Multiple-Compartment Model (GMCM) is the powerful and more accepted method for biokinetical studies, which allows the calculation of concentration of trace elements in organs as a function of time, when the flow parameters of the model are known. However, few biokinetics data exist in the literature, and the determination of flow and transfer parameters by statistical fitting for each system is an open problem.Restriction on the complexity of the problem: This version of the code works with the constant volume approximation, which is valid for many situations where the biological half-live of a trace is lower than the volume rise time. Another restriction is related to the central flux model. The model considered in the code assumes that exist one central compartment (e.g., blood), that connect the flow with all compartments, and the flow between other compartments is not included.Typical running time: Depends on the choice for calculations. Using the Derivative Method the time is very short (a few minutes) for any number of compartments considered. When the Gauss-Marquardt iterative method is used the calculation time can be approximately 5-6 hours when similar to 15 compartments are considered. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
This work describes the application of partial least squares (PLS) regression to variables that represent the oxidation data of several types of secondary metabolite isolated from the family Asteraceae. The oxidation states were calculated for each carbon atom of the involved compounds after these had been matched with their biogenetic precursor. The states of oxidation variations were named oxidation steps. This methodology represents a new approach to inspect the oxidative changes in taxa. Partial least square (PLS) regression was used to inspect the relationships among terpenoids, cournarins, polyacetylenes, and flavonoids from a data base containing approximately 27,000 botanical entries. The results show an interdependence between the average oxidation states of each class of secondary metabolite at tribe and sub tribe levels.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We present a semiempirical method to study the production and propagation of atmospheric secondary protons with energy>100 Mev, moving in the vertical direction. The derived production functions are fitted by the least-square method for the only previously published splash (SP) and return (RE) albedos observed data using the same instrument and measurement sites. The closed agreements between the measurement data and the calculations over a wide range of atmospheric depths lead to a possible extension of the method for other latitudes. The spectra of SP and RE intensities versus the geomagnetic cut-off reveal similar behaviour as assumed earlier by the theory for those components in the Earth's magnetic field. © 1993 Società Italiana di Fisica.
Resumo:
Systematic errors can have a significant effect on GPS observable. In medium and long baselines the major systematic error source are the ionosphere and troposphere refraction and the GPS satellites orbit errors. But, in short baselines, the multipath is more relevant. These errors degrade the accuracy of the positioning accomplished by GPS. So, this is a critical problem for high precision GPS positioning applications. Recently, a method has been suggested to mitigate these errors: the semiparametric model and the penalised least squares technique. It uses a natural cubic spline to model the errors as a function which varies smoothly in time. The systematic errors functions, ambiguities and station coordinates, are estimated simultaneously. As a result, the ambiguities and the station coordinates are estimated with better reliability and accuracy than the conventional least square method.
Resumo:
The objective of the present study was to estimate the allele and genotype frequencies of the CSN3/Hinfl and LGB/HaeIII gene polymorphisms in beef cattle belonging to different genetic groups, and to determine the effects of these polymorphisms on growth and carcass traits in these animals, which are submitted to an intensive production model. Genotyping was performed on 79 Nelore, 30 Canchim (5/8 Charolais + 3/8 Zebu) and 275 crossbred cattle originating from the crosses of Simmental (n = 30) and Angus (n = 245) sires with Nelore females. Body weight, weight gain, dressing percentage, longissimus dorsi area and backfat thickness were fitted using the GLM procedure, and least square means of the genotypes were compared by the F test. The results showed that the CSN3/Hinfl and LGB/HaeIII polymorphisms did not have any effect on growth or carcass traits (p > 0.05). Copyright by the Brazilian Society of genetics.
Resumo:
The GPS observables are subject to several errors. Among them, the systematic ones have great impact, because they degrade the accuracy of the accomplished positioning. These errors are those related, mainly, to GPS satellites orbits, multipath and atmospheric effects. Lately, a method has been suggested to mitigate these errors: the semiparametric model and the penalised least squares technique (PLS). In this method, the errors are modeled as functions varying smoothly in time. It is like to change the stochastic model, in which the errors functions are incorporated, the results obtained are similar to those in which the functional model is changed. As a result, the ambiguities and the station coordinates are estimated with better reliability and accuracy than the conventional least square method (CLS). In general, the solution requires a shorter data interval, minimizing costs. The method performance was analyzed in two experiments, using data from single frequency receivers. The first one was accomplished with a short baseline, where the main error was the multipath. In the second experiment, a baseline of 102 km was used. In this case, the predominant errors were due to the ionosphere and troposphere refraction. In the first experiment, using 5 minutes of data collection, the largest coordinates discrepancies in relation to the ground truth reached 1.6 cm and 3.3 cm in h coordinate for PLS and the CLS, respectively, in the second one, also using 5 minutes of data, the discrepancies were 27 cm in h for the PLS and 175 cm in h for the CLS. In these tests, it was also possible to verify a considerable improvement in the ambiguities resolution using the PLS in relation to the CLS, with a reduced data collection time interval. © Springer-Verlag Berlin Heidelberg 2007.
Resumo:
The swallowing disturbers are defined as oropharyngeal dysphagia when present specifies signals and symptoms that are characterized for alterations in any phases of swallowing. Early diagnosis is crucial for the prognosis of patients with dysphagia and the potential to diagnose dysphagia in a noninvasive manner by assessing the sounds of swallowing is a highly attractive option for the dysphagia clinician. This study proposes a new framework for oropharyngeal dysphagia identification, having two main contributions: a new set of features extract from swallowing signal by discrete wavelet transform and the dysphagia classification by a novel pattern classifier called OPF. We also employed the well known SVM algorithm in the dysphagia identification task, for comparison purposes. We performed the experiments in two sub-signals: the first was the moment of the maximal peak (MP) of the signal and the second is the swallowing apnea period (SAP). The OPF final accuracy obtained were 85.2% and 80.2% for the analyzed signals MP and SAP, respectively, outperforming the SVM results. ©2008 IEEE.
Resumo:
GPS active networks are more and more used in geodetic surveying and scientific experiments, as water vapor monitoring in the atmosphere and lithosphere plate movement. Among the methods of GPS positioning, Precise Point Positioning (PPP) has provided very good results. A characteristic of PPP is related to the modeling and / or estimation of the errors involved in this method. The accuracy obtained for the coordinates can reach few millimeters. Seasonal effects can affect such accuracy if they are not consistent treated during the data processing. Coordinates time series analyses have been realized using Fourier or Harmonics spectral analyses, wavelets, least squares estimation among others. An approach is presented in this paper aiming to investigate the seasonal effects included in the stations coordinates time series. Experiments were carried out using data from stations Manaus (NAUS) and Fortaleza (BRFT) which belong to the Brazilian Continuous GPS Network (RBMC). The coordinates of these stations were estimated daily using PPP and were analyzed through wavelets for identification of the periods of the seasonal effects (annual and semi-annual) in each time series. These effects were removed by means of a filtering process applied in the series via the least squares adjustment (LSQ) of a periodic function. The results showed that the combination of these two mathematical tools, wavelets and LSQ, is an interesting and efficient technique for removal of seasonal effects in time series.
Resumo:
This paper presents a novel, fast and accurate appearance-based method for infrared face recognition. By introducing the Optimum-Path Forest classifier, our objective is to get good recognition rates and effectively reduce the computational effort. The feature extraction procedure is carried out by PCA, and the results are compared to two other well known supervised learning classifiers; Artificial Neural Networks and Support Vector Machines. The achieved performance asserts the promise of the proposed framework. ©2009 IEEE.
Resumo:
Fraud detection in energy systems by illegal consumers is the most actively pursued study in non-technical losses by electric power companies. Commonly used supervised pattern recognition techniques, such as Artificial Neural Networks and Support Vector Machines have been applied for automatic commercial frauds identification, however they suffer from slow convergence and high computational burden. We introduced here the Optimum-Path Forest classifier for a fast non-technical losses recognition, which has been demonstrated to be superior than neural networks and similar to Support Vector Machines, but much faster. Comparisons among these classifiers are also presented. © 2009 IEEE.
Resumo:
In this work we propose a novel automatic cast iron segmentation approach based on the Optimum-Path Forest classifier (OPF). Microscopic images from nodular, gray and malleable cast irons are segmented using OPF, and Support Vector Machines (SVM) with Radial Basis Function and SVM without kernel mapping. Results show accurate and fast segmented images, in which OPF outperformed SVMs. Our work is the first into applying OPF for automatic cast iron segmentation. © 2010 Springer-Verlag.
Resumo:
Cuttings return analysis is an important tool to detect and prevent problems during the petroleum well drilling process. Several measurements and tools have been developed for drilling problems detection, including mud logging, PWD and downhole torque information. Cuttings flow meters were developed in the past to provide information regarding cuttings return at the shale shakers. Their use, however, significantly impact the operation including rig space issues, interferences in geological analysis besides, additional personel required. This article proposes a non intrusive system to analyze the cuttings concentration at the shale shakers, which can indicate problems during drilling process, such as landslide, the collapse of the well borehole walls. Cuttings images are acquired by a high definition camera installed above the shakers and sent to a computer coupled with a data analysis system which aims the quantification and closure of a cuttings material balance in the well surface system domain. No additional people at the rigsite are required to operate the system. Modern Artificial intelligence techniques are used for pattern recognition and data analysis. Techniques include the Optimum-Path Forest (OPF), Artificial Neural Network using Multilayer Perceptrons (ANN-MLP), Support Vector Machines (SVM) and a Bayesian Classifier (BC). Field test results conducted on offshore floating vessels are presented. Results show the robustness of the proposed system, which can be also integrated with other data to improve the efficiency of drilling problems detection. Copyright 2010, IADC/SPE Drilling Conference and Exhibition.
Resumo:
Traditional pattern recognition techniques can not handle the classification of large datasets with both efficiency and effectiveness. In this context, the Optimum-Path Forest (OPF) classifier was recently introduced, trying to achieve high recognition rates and low computational cost. Although OPF was much faster than Support Vector Machines for training, it was slightly slower for classification. In this paper, we present the Efficient OPF (EOPF), which is an enhanced and faster version of the traditional OPF, and validate it for the automatic recognition of white matter and gray matter in magnetic resonance images of the human brain. © 2010 IEEE.
Resumo:
Artificial intelligence techniques have been extensively used for the identification of several disorders related with the voice signal analysis, such as Parkinson's disease (PD). However, some of these techniques flaw by assuming some separability in the original feature space or even so in the one induced by a kernel mapping. In this paper we propose the PD automatic recognition by means of Optimum-Path Forest (OPF), which is a new recently developed pattern recognition technique that does not assume any shape/separability of the classes/feature space. The experiments showed that OPF outperformed Support Vector Machines, Artificial Neural Networks and other commonly used supervised classification techniques for PD identification. © 2010 IEEE.