797 resultados para learning classifier systems


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In contrast to preoperative brain tumor segmentation, the problem of postoperative brain tumor segmentation has been rarely approached so far. We present a fully-automatic segmentation method using multimodal magnetic resonance image data and patient-specific semi-supervised learning. The idea behind our semi-supervised approach is to effectively fuse information from both pre- and postoperative image data of the same patient to improve segmentation of the postoperative image. We pose image segmentation as a classification problem and solve it by adopting a semi-supervised decision forest. The method is evaluated on a cohort of 10 high-grade glioma patients, with segmentation performance and computation time comparable or superior to a state-of-the-art brain tumor segmentation method. Moreover, our results confirm that the inclusion of preoperative MR images lead to a better performance regarding postoperative brain tumor segmentation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Smart homes for the aging population have recently started attracting the attention of the research community. The "health state" of smart homes is comprised of many different levels; starting with the physical health of citizens, it also includes longer-term health norms and outcomes, as well as the arena of positive behavior changes. One of the problems of interest is to monitor the activities of daily living (ADL) of the elderly, aiming at their protection and well-being. For this purpose, we installed passive infrared (PIR) sensors to detect motion in a specific area inside a smart apartment and used them to collect a set of ADL. In a novel approach, we describe a technology that allows the ground truth collected in one smart home to train activity recognition systems for other smart homes. We asked the users to label all instances of all ADL only once and subsequently applied data mining techniques to cluster in-home sensor firings. Each cluster would therefore represent the instances of the same activity. Once the clusters were associated to their corresponding activities, our system was able to recognize future activities. To improve the activity recognition accuracy, our system preprocessed raw sensor data by identifying overlapping activities. To evaluate the recognition performance from a 200-day dataset, we implemented three different active learning classification algorithms and compared their performance: naive Bayesian (NB), support vector machine (SVM) and random forest (RF). Based on our results, the RF classifier recognized activities with an average specificity of 96.53%, a sensitivity of 68.49%, a precision of 74.41% and an F-measure of 71.33%, outperforming both the NB and SVM classifiers. Further clustering markedly improved the results of the RF classifier. An activity recognition system based on PIR sensors in conjunction with a clustering classification approach was able to detect ADL from datasets collected from different homes. Thus, our PIR-based smart home technology could improve care and provide valuable information to better understand the functioning of our societies, as well as to inform both individual and collective action in a smart city scenario.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The contribution of this article demonstrates how to identify context-aware types of e-Learning objects (eLOs) derived from the subject domains. This perspective is taken from an engineering point of view and is applied during requirements elicitation and analysis relating to present work in constructing an object-oriented (OO), dynamic, and adaptive model to build and deliver packaged e-Learning courses. Consequently, three preliminary subject domains are presented and, as a result, three primitive types of eLOs are posited. These types educed from the subject domains are of structural, conceptual, and granular nature. Structural objects are responsible for the course itself, conceptual objects incorporate adaptive and logical interoperability, while granular objects congregate granular assets. Their differences, interrelationships, and responsibilities are discussed. A major design challenge relates to adaptive behaviour. Future research addresses refinement on the subject domains and adaptive hypermedia systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Libraries of learning objects may serve as basis for deriving course offerings that are customized to the needs of different learning communities or even individuals. Several ways of organizing this course composition process are discussed. Course composition needs a clear understanding of the dependencies between the learning objects. Therefore we discuss the metadata for object relationships proposed in different standardization projects and especially those suggested in the Dublin Core Metadata Initiative. Based on these metadata we construct adjacency matrices and graphs. We show how Gozinto-type computations can be used to determine direct and indirect prerequisites for certain learning objects. The metadata may also be used to define integer programming models which can be applied to support the instructor in formulating his specifications for selecting objects or which allow a computer agent to automatically select learning objects. Such decision models could also be helpful for a learner navigating through a library of learning objects. We also sketch a graph-based procedure for manual or automatic sequencing of the learning objects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Specification consortia and standardization bodies concentrate on e-Learning objects to en-sure reusability of content. Learning objects may be collected in a library and used for deriv-ing course offerings that are customized to the needs of different learning communities. How-ever, customization of courses is possible only if the logical dependencies between the learn-ing objects are known. Metadata for describing object relationships have been proposed in several e-Learning specifications. This paper discusses the customization potential of e-Learning objects but also the pitfalls that exist if content is customized inappropriately.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

While many tend to think of memory systems in the brain as a single process, in reality several experiments have supported multiple dissociations of different forms of learning, such as spatial learning and response learning. In both humans and rats, the hippocampus has long been shown to be specialized in the storage of spatial and contextual memory whereas the striatum is associated with motor responses and habitual behaviors. Previous studies have examined how damage to hippocampus or striatum has affected the acquisition of either a spatial or response navigation task. However even in a very familiar environment organisms must continuously switch between place and response strategies depending upon circumstances. The current research investigates how these two brain systems interact under normal conditions to produce navigational behavior. Rats were tested using a task developed by Jacobson and colleagues (2006) in which the two types of navigation could be controlled and studied simultaneously. Rats were trained to solve a plus maze using both a spatial and a response strategy. A cue (flashing light) was employed to indicate the correct strategy on a given trial. When no light was present, the animals were rewarded for making a 90º right turn (motor response). When the light was on, the animals were rewarded for going to a specific goal location (place strategy). After learning the task, animals had a sham surgery or dorsal striatum or hippocampus damaged. In order to investigate the individual role of each brain system and evaluate whether these brain regions compete or cooperate for control over strategy, we utilized a within-animal comparisons. The configuration of the maze allowed for the comparison of behavior in individual animals before and after specific brain areas were damaged. Animals with hippocampal lesions showed selective deficits on place trials after surgery and learned the reversal of the motor response more rapidly than striatal lesioned or sham rats. Unlike previous findings regarding maze learning, animals with striatal lesions showed deficits in both place and response trials and had difficulty learning the reversal of motor response. Therefore, the effects of lesions on the ability to switch back and forth between strategies were more complex than previously suggested. This work may reveal important new insight on the integration of hippocampal and striatal learning systems, and facilitate a better understanding of the brain dynamics underlying similar navigational processes in humans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent developments in federal policy have prompted the creation of state evaluation frameworks for principals and teachers that hold educators accountable for effective practices and student outcomes. These changes have created a demand for formative evaluation instruments that reflect current accountability pressures and can be used by schools to focus school improvement and leadership development efforts. The Comprehensive Assessment of Leadership for Learning (CALL) is a next generation, 360-degree on-line assessment and feedback system that reflect best practices in feedback design. Some unique characteristics of CALL include a focus on: leadership distributed throughout the school rather than as carried out by an individual leader; assessment of leadership tasks rather than perceptions of leadership practice; a focus on larger complex systems of middle and high school; and transparency of assessment design. This paper describes research contributing to the design and validation of the CALL survey instrument.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Learning the structure of a graphical model from data is a common task in a wide range of practical applications. In this paper, we focus on Gaussian Bayesian networks, i.e., on continuous data and directed acyclic graphs with a joint probability density of all variables given by a Gaussian. We propose to work in an equivalence class search space, specifically using the k-greedy equivalence search algorithm. This, combined with regularization techniques to guide the structure search, can learn sparse networks close to the one that generated the data. We provide results on some synthetic networks and on modeling the gene network of the two biological pathways regulating the biosynthesis of isoprenoids for the Arabidopsis thaliana plant

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports a learning experience related to the acquisition of project management competences. Students from three different universities and backgrounds, cooperate in a common project that drives the learning-teaching process. Previous related works on this initiative have already evaluated the goodness of this multidisciplinary, project-based learning approach in the context of a new educative paradigm. Yet the innovative experience has allowed the authors to define a rubric in order to measure specific competences in project management. The study shows the rubric’s main aspects as well as competence acquisition evaluation alternatives, based in the metrics defined. Key indicators and specific reports obtained from data base fields in the web tool will support this work. As a result, new competences can be assessed, such ones like teamwork, problem solving, communication and leadership. Final goal is to provide an overall competence map to the students at the same time they improve their skills.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The confluence of three-dimensional (3D) virtual worlds with social networks imposes on software agents, in addition to conversational functions, the same behaviours as those common to human-driven avatars. In this paper, we explore the possibilities of the use of metabots (metaverse robots) with motion capabilities in complex virtual 3D worlds and we put forward a learning model based on the techniques used in evolutionary computation for optimizing the fuzzy controllers which will subsequently be used by metabots for moving around a virtual environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fuzzy min–max neural network classifier is a supervised learning method. This classifier takes the hybrid neural networks and fuzzy systems approach. All input variables in the network are required to correspond to continuously valued variables, and this can be a significant constraint in many real-world situations where there are not only quantitative but also categorical data. The usual way of dealing with this type of variables is to replace the categorical by numerical values and treat them as if they were continuously valued. But this method, implicitly defines a possibly unsuitable metric for the categories. A number of different procedures have been proposed to tackle the problem. In this article, we present a new method. The procedure extends the fuzzy min–max neural network input to categorical variables by introducing new fuzzy sets, a new operation, and a new architecture. This provides for greater flexibility and wider application. The proposed method is then applied to missing data imputation in voting intention polls. The micro data—the set of the respondents’ individual answers to the questions—of this type of poll are especially suited for evaluating the method since they include a large number of numerical and categorical attributes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A good and early fault detection and isolation system along with efficient alarm management and fine sensor validation systems are very important in today¿s complex process plants, specially in terms of safety enhancement and costs reduction. This paper presents a methodology for fault characterization. This is a self-learning approach developed in two phases. An initial, learning phase, where the simulation of process units, without and with different faults, will let the system (in an automated way) to detect the key variables that characterize the faults. This will be used in a second (on line) phase, where these key variables will be monitored in order to diagnose possible faults. Using this scheme the faults will be diagnosed and isolated in an early stage where the fault still has not turned into a failure.