891 resultados para joint terminal attack controller
Resumo:
This thesis describes the process of design and modeling of instrument for knee joint kinematics measurement that can work for both in-vivo and in-vitro subjects. It is designed to be compatible with imaging machine in a sagittal plane. Due to the invasiveness of the imaging machine, the instrument is designed to be able to function independently. The flexibility of this instrument allows to measure anthropometrically different subject. Among the sixth degree of freedom of a knee, three rotational and one translational degree of freedom can be measured for both type of subject. The translational, proximal-distal, motion is stimulated by external force directly applied along its axis. These angular and linear displacements are measured by magnetic sensors and high precision potentiometers respectively
Resumo:
With information technology (IT) playing an increasing important role in driving the business, the value of IT investment is often challenged because not all of those investment decisions are made in a reasonable way or aligned with business strategies. IT investment portfolio management (PfM) is an effective way to prioritize and select the right IT projects to invest in, by taking all the project proposals into consideration as a whole, based on their business value, risks, costs, and interrelationships. There are different decision models to prioritise projects, and the Analytic Hierarchy Process (AHP) is one of the most commonly-used methods and is discussed in this master thesis. At the same time, there are IT projects on different levels for a multinational company, from global to local. For instance, many of them are probably proposed by joint ventures on local level. In the oil & gas industry, joint ventures are often formed especially in the area of the upstream (exploration & production). How to involve those projects into the IT investment PfM approach of the parent company is a challenge, because the parent company cannot make the decisions on its own. It needs to prioritize all projects in an adequate way, communicate with JVs and influence them. Also, different control levels on JVs need to be considered. This paper hence attempts to introduce a tailored approach of IT investment PfM for a multinational oil & gas company to address the issues around JVs.
Resumo:
OBJETIVO: avaliar a freqüencia de ansiedade e depressão em cuidadores principais de mulheres em fase terminal de câncer de mama ou genital. MÉTODOS: para este estudo de corte transversal foram incluídos 133 cuidadores de pacientes sem possibilidades curativas, internadas no Centro de Atenção Integral à Saúde da Mulher, entre agosto de 2002 e maio de 2004. Das pacientes incluídas, 71 apresentavam câncer de mama e 62, câncer ginecológico. Foi aplicada a Escala Hospitalar de Ansiedade e Depressão e realizada entrevista para obter outras informações como idade, sexo, religião, parentesco com a paciente, profissão, se cuidava de outras pessoas, se a rotina dele mudou e se outras pessoas ajudavam a cuidar da paciente. Utilizou-se a regressão logística para cálculo do odds ratio (OR) e seus respectivos intervalos de confiança (IC), para avaliar a relação entre os diagnósticos de ansiedade e depressão entre os cuidadores informais. Para a análise múltipla foi considerado o critério de seleção de variáveis passo a passo. RESULTADOS: observou-se que 43% das pacientes indicaram como cuidador principal a filha e 24% o marido. A maioria dos cuidadores tinha idade superior a 35 anos (63%), 68% eram do sexo feminino, 59% estavam desempregados ou aposentados, 47% cuidavam de outra pessoa e 84% referiram mudança na rotina pelo fato de cuidar. A ansiedade foi detectada em 99 cuidadores principais (74,4%) e a depressão em 71 (53,4%), sendo estes estados fortemente relacionados entre si (OR=5,6; IC 95%: 2,2 a 15,9). Na análise bivariada, o marido apresentou menos ansiedade e, após regressão logística, apenas o fato de ser homem esteve relacionado com menor ansiedade. CONCLUSÃO: o processo de cuidar de paciente na fase terminal levou a altas taxas de ansiedade e depressão. Os homens e maridos despontaram neste estudo como cuidadores menos ansiosos.
Resumo:
In ship and offshore terminal construction, welded cross sections are thick and the number of welds very high. Consequently, there are two aspects of great importance; cost and heat input. Reduction in the welding operation time decreases the costs of the work force and avoids excessive heat, preventing distortion and other weld defects. The need to increase productivity while using a single wire in the GMAW process has led to the use of a high current and voltage to improve the melting rate. Unfortunately, this also increases the heat input. Innovative GMAW processes, mostly implemented for sheet plate sections, have shown significant reduction in heat input (Q), low distortion and increase in welding speed. The aim of this study is to investigate adaptive pulsed GMAW processes and assess relevant applications in the high power range, considering possible benefits when welding thicker sections and high yield strength steel. The study experimentally tests the usability of adaptive welding processes and evaluates their effects on weld properties, penetration and shapes of the weld bead.The study first briefly reviews adaptive GMAW to evaluate different approaches and their applications and to identify benefits in adaptive pulsed. Experiments are then performed using Synergic Pulsed GMAW, WiseFusionTM and Synergic GMAW processes to weld a T-joint in a horizontal position (PB). The air gap between the parts ranges from 0 to 2.5 mm. The base materials are structural steel grade S355MC and filler material G3Si1. The experiment investigates heat input, mechanical properties and microstructure of the welded joint. Analysis of the literature reveals that different approaches have been suggested using advanced digital power sources with accurate waveform, current, voltage, and feedback control. In addition, studies have clearly indicated the efficiency of lower energy welding processes. Interest in the high power range is growing and a number of different approaches have been suggested. The welding experiments in this study reveal a significant reduction of heat input and a weld microstructure with the presence of acicular ferrite (AF) beneficial for resistance to crack propagation. The WiseFusion bead had higher dilution, due to the weld bead shape, and low defects. Adaptive pulse GMAW processes can be a favoured choice when welding structures with many welded joints. The total heat reduction mitigates residual stresses and the bead shape allows a higher amperage limit. The stability of the arc during the process is virtually spatter free and allows an increase in welding speed.
Model-View-Controller architectural pattern and its evolution in graphical user interface frameworks
Resumo:
Model-View-Controller (MVC) is an architectural pattern used in software development for graphical user interfaces. It was one of the first proposed solutions in the late 1970s to the Smart UI anti-pattern, which refers to the act of writing all domain logic into a user interface. The original MVC pattern has since evolved in multiple directions, with various names and may confuse many. The goal of this thesis is to present the origin of the MVC pattern and how it has changed over time. Software architecture in general and the MVC’s evolution within web applications are not the primary focus. Fundamen- tal designs are abstracted, and then used to examine the more recent versions. Prob- lems with the subject and its terminology are also presented.
Resumo:
A retrospective study of the epidemiological and clinic-pathological aspects of cattle and buffaloes with degenerative joint disease (DJD) was conducted in the state of Pará, Brazil. From 1999 to 2014, eleven cattle and 24 buffaloes were evaluated. All the treated animals with suspected DJD underwent a clinical examination of the musculoskeletal system. In seven cattle and eight buffaloes with clinical signs of the disease postmortem examination was performed. The common clinical signs observed in both species were chronic lameness, stiff gait, postural changes, audible crackles in the affected limb, prolonged recumbency, difficulty in getting up and progressive weight loss. The lesions observed at necropsy were: irregular articular surfaces, erosion of the articular cartilage and the underlying bone tissue, and proliferation of the periarticular bone tissue with formation of osteophytes. The most affected joints in cattle and buffaloes wereof the hind limb. In buffaloes, the main predisposing factor to the onset of DJD was phosphorus deficiency. In cattle, defects of the anatomical conformation of the hind limbs, chronic trauma due to the activities performed, such as semen collection, and advanced age possibly contributed to the emergence of the disease.
Resumo:
This work deals with an hybrid PID+fuzzy logic controller applied to control the machine tool biaxial table motions. The non-linear model includes backlash and the axis elasticity. Two PID controllers do the primary table control. A third PID+fuzzy controller has a cross coupled structure whose function is to minimise the trajectory contour errors. Once with the three PID controllers tuned, the system is simulated with and without the third controller. The responses results are plotted and compared to analyse the effectiveness of this hybrid controller over the system. They show that the proposed methodology reduces the contour error in a proportion of 70:1.
Resumo:
This article deals with a contour error controller (CEC) applied in a high speed biaxial table. It works simultaneously with the table axes controllers, helping them. In the early stages of the investigation, it was observed that its main problem is imprecision when tracking non-linear contours at high speeds. The objectives of this work are to show that this problem is caused by the lack of exactness of the contour error mathematical model and to propose modifications in it. An additional term is included, resulting in a more accurate value of the contour error, enabling the use of this type of motion controller at higher feedrate. The response results from simulated and experimental tests are compared with those of common PID and non-corrected CEC in order to analyse the effectiveness of this controller over the system. The main conclusions are that the proposed contour error mathematical model is simple, accurate, almost insensible to the feedrate and that a 20:1 reduction of the integral absolute contour error is possible.
Resumo:
Industrial applications demand that robots operate in agreement with the position and orientation of their end effector. It is necessary to solve the kinematics inverse problem. This allows the displacement of the joints of the manipulator to be determined, to accomplish a given objective. Complete studies of dynamical control of joint robotics are also necessary. Initially, this article focuses on the implementation of numerical algorithms for the solution of the kinematics inverse problem and the modeling and simulation of dynamic systems. This is done using real time implementation. The modeling and simulation of dynamic systems are performed emphasizing off-line programming. In sequence, a complete study of the control strategies is carried out through the study of several elements of a robotic joint, such as: DC motor, inertia, and gearbox. Finally a trajectory generator, used as input for a generic group of joints, is developed and a proposal of the controller's implementation of joints, using EPLD development system, is presented.
Resumo:
Control of an industrial robot is mainly a problem of dynamics. It includes non-linearities, uncertainties and external perturbations that should be considered in the design of control laws. In this work, two control strategies based on variable structure controllers (VSC) and a PD control algorithm are compared in relation to the tracking errors considering friction. The controller's performances are evaluated by adding an static friction model. Simulations and experimental results show it is possible to diminish tracking errors by using a model based friction compensation scheme. A SCARA robot is used to illustrate the conclusions of this paper.
Resumo:
The assembly and maintenance of the International Thermonuclear Experimental Reactor (ITER) vacuum vessel (VV) is highly challenging since the tasks performed by the robot involve welding, material handling, and machine cutting from inside the VV. The VV is made of stainless steel, which has poor machinability and tends to work harden very rapidly, and all the machining operations need to be carried out from inside of the ITER VV. A general industrial robot cannot be used due to its poor stiffness in the heavy duty machining process, and this will cause many problems, such as poor surface quality, tool damage, low accuracy. Therefore, one of the most suitable options should be a light weight mobile robot which is able to move around inside of the VV and perform different machining tasks by replacing different cutting tools. Reducing the mass of the robot manipulators offers many advantages: reduced material costs, reduced power consumption, the possibility of using smaller actuators, and a higher payload-to-robot weight ratio. Offsetting these advantages, the lighter weight robot is more flexible, which makes it more difficult to control. To achieve good machining surface quality, the tracking of the end effector must be accurate, and an accurate model for a more flexible robot must be constructed. This thesis studies the dynamics and control of a 10 degree-of-freedom (DOF) redundant hybrid robot (4-DOF serial mechanism and 6-DOF 6-UPS hexapod parallel mechanisms) hydraulically driven with flexible rods under the influence of machining forces. Firstly, the flexibility of the bodies is described using the floating frame of reference method (FFRF). A finite element model (FEM) provided the Craig-Bampton (CB) modes needed for the FFRF. A dynamic model of the system of six closed loop mechanisms was assembled using the constrained Lagrange equations and the Lagrange multiplier method. Subsequently, the reaction forces between the parallel and serial parts were used to study the dynamics of the serial robot. A PID control based on position predictions was implemented independently to control the hydraulic cylinders of the robot. Secondly, in machining, to achieve greater end effector trajectory tracking accuracy for surface quality, a robust control of the actuators for the flexible link has to be deduced. This thesis investigates the intelligent control of a hydraulically driven parallel robot part based on the dynamic model and two schemes of intelligent control for a hydraulically driven parallel mechanism based on the dynamic model: (1) a fuzzy-PID self-tuning controller composed of the conventional PID control and with fuzzy logic, and (2) adaptive neuro-fuzzy inference system-PID (ANFIS-PID) self-tuning of the gains of the PID controller, which are implemented independently to control each hydraulic cylinder of the parallel mechanism based on rod length predictions. The serial component of the hybrid robot can be analyzed using the equilibrium of reaction forces at the universal joint connections of the hexa-element. To achieve precise positional control of the end effector for maximum precision machining, the hydraulic cylinder should be controlled to hold the hexa-element. Thirdly, a finite element approach of multibody systems using the Special Euclidean group SE(3) framework is presented for a parallel mechanism with flexible piston rods under the influence of machining forces. The flexibility of the bodies is described using the nonlinear interpolation method with an exponential map. The equations of motion take the form of a differential algebraic equation on a Lie group, which is solved using a Lie group time integration scheme. The method relies on the local description of motions, so that it provides a singularity-free formulation, and no parameterization of the nodal variables needs to be introduced. The flexible slider constraint is formulated using a Lie group and used for modeling a flexible rod sliding inside a cylinder. The dynamic model of the system of six closed loop mechanisms was assembled using Hamilton’s principle and the Lagrange multiplier method. A linearized hydraulic control system based on rod length predictions was implemented independently to control the hydraulic cylinders. Consequently, the results of the simulations demonstrating the behavior of the robot machine are presented for each case study. In conclusion, this thesis studies the dynamic analysis of a special hybrid (serialparallel) robot for the above-mentioned special task involving the ITER and investigates different control algorithms that can significantly improve machining performance. These analyses and results provide valuable insight into the design and control of the parallel robot with flexible rods.
Resumo:
We investigated the long-lasting effect of peripheral injection of the neuropeptide substance P (SP) and of some N- or C-terminal SP fragments (SPN and SPC, respectively) on retention test performance of avoidance learning. Male Wistar rats (220 to 280 g) were trained in an inhibitory step-down avoidance task and tested 24 h or 21 days later. Immediately after the training trial rats received an intraperitoneal injection of SP (50 µg/kg), SPN 1-7 (167 µg/kg) or SPC 7-11 (134 µg/kg). Control groups were injected with vehicle or SP 5 h after the training trial. The immediate post-training administration of SP and SPN, but not SPC, facilitated avoidance behavior in rats tested 24 h or 21 days later, i.e., the retention test latencies of the SP and SPN groups were significantly longer (P<0.05, Mann-Whitney U-test) during both training-test intervals. These observations suggest that the memory-enhancing effect of SP is long-lasting and that the amino acid sequence responsible for this effect is encoded by its N-terminal part