736 resultados para ionic liquids
Resumo:
The facile syntheses of 1,2- and 3,5-cyclic sulfite and sulfate furanoside diesters were conducted in molecular solvents and ionic liquids in the presence of immobilised morpholine. Molecular solvents and ionic liquids performed similarly with regards to overall yields. However, the use of ILs allowed for the reactions to be carried out under atmospheric conditions and showed good recyclability. Additionally, increases in product stability was achieved in ILs over organic solvents, in particular, in bis{(trifluoromethanesulfonyl)imide) and trispentafluoro-ethyltrifluorophosphate-based ionic liquids, which were also excellent media to control the hydrolysis of thionyl chloride and sulfuryl chloride. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Ionogels are solid oxide host networks con. ning at a meso-scale ionic liquids, and retaining their liquid nature. Ionogels were obtained by dissolving lanthanide(III) complexes in the ionic liquid 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide, [C(6)mim][Tf2N], followed by confinement of the lanthanide-doped ionic liquid mixtures in the pores of a nano-porous silica network. [C(6)mim][Ln(tta)(4)], where tta is 2-thenoyltrifluoroacetonate and Ln = Nd, Sm, Eu, Ho, Er, Yb, and [choline](3)[Tb(dpa)(3)], where dpa = pyridine-2,6-dicarboxylate (dipicolinate), were chosen as the lanthanide complexes. The ionogels are luminescent, ion-conductive inorganic-organic hybrid materials. Depending on the lanthanide(III) ion, emission in the visible or the near-infrared regions of the electromagnetic spectrum was observed. The work presented herein highlights that the confinement did not disturb the first coordination sphere of the lanthanide ions and also showed the excellent luminescence performance of the lanthanide tetrakis beta-diketonate complexes. The crystal structures of the complexes [C(6)mim][Yb(tta)(4)] and [choline](3)[Tb(dpa)(3)] are reported.
Resumo:
1,2-Cyclic sulfite xylosides offer facile access to 1,2-oxazolines upon reaction with aromatic and alkyl nitrites under Lewis or Bronsted acid conditions. Additionally, hydrophobic ionic liquids facilitate acid-catalysed formations of such oxazolines and C- and O-linked xylosides, providing means to carry out fast reactions at room temperature, and this in yields comparable to reactions conducted in xylene at high temperature for extended reaction time. (c) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Ta2O5-SiO2 catalysts were prepared by a sol-gel method using tetraethyl orthosilicate (TEOS) and tantalum (V) ethoxide as the sources of silicon and tantalum, and two families of quaternary ammonium salts, [CnH(2n+1)(CH3)(3)N]Br (n = 14, 16, 18) and [(CnH(2n+1))(4)N]Br (n = 10, 12, 16, 18) as surfactants. The catalysts were compared for the selective suffoxidation of 4,6-dimethyl-2-thiomethylpyrimidine using peroxide as an oxidising agent in a range of ionic liquids and organic solvents. The sol-gel catalysts were also compared with tantalum on MCM-41 prepared by grafting. The catalysts were characterized from adsorption-desorption isotherms of N-2, XRD patterns, small-angle X-ray scattering, IR spectra from adsorbed pyridine and CDCl3, XPS spectra, and Si-29 magic angle spinning (MAS) NNIR experiments. The effect of recycling on the catalyst leaching and selectivity/activity was also studied. High activities and selectivities were found in [NTf2](-) based ionic liquids and organic solvents with good recyclability of the catalyst. Tantalum was found in the solution after reaction; however, this was determined to be due to entrapment of catalyst particulates, as opposed to leaching of the active metal. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Ceria (CeO2) is a technologically important rare earth material because of its unique properties and various engineering and biological applications. A facile and rapid method has been developed to prepare ceria nanoparticles using microwave with the average size 7 nm in the presence of a set of ionic liquids based on the bis (trifluoromethylsulfonyl) imide anion and different cations of 1-alkyl-3-methyl-imidazolium. The structural features and optical properties of the nanoparticles were determined in depth with X-ray powder diffraction, transmission electron microscope, N-2 adsorption-desorption technique, dynamic light scattering (DLS) analysis, FTIR spectroscopy, Raman spectroscopy, UV-vis absorption spectroscopy, and Diffuse reflectance spectroscopy. The energy band gap measurements of nanoparticles of ceria have been carried out by UV-visible absorption spectroscopy and diffuse reflectance spectroscopy. The surface charge properties of colloidal ceria dispersions in ethylene glycol have been also studied. To the best of our knowledge, this is the first report on using this type of ionic liquids in ceria nanoparticle synthesis. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
The dimerisation of cyclooctene (COE) to 1,9-cyclohexadecadiene, a molecule of interest to the fragrance industry, has been achieved using ruthenium catalysts in organic solvents with significantly better selectivities (47-74%) and yields (39-60%) than previously reported (34% and 30%, respectively). Grubbs' first and second generation catalysts, the Hoveyda-Grubbs' catalyst and a phosphonium alkylidene catalyst were tested in a range of organic solvents and ionic liquids (ILs), including 1:1 IL/dichloromethane mixtures and biphasic IL + pentane systems. The best results (74% selectivity, 60% yield) were obtained using Grubbs' first generation catalyst in 1,2-dichloroethane. The formation of trimer, tetramer and other higher molecular mass products were found to be favoured at low catalyst loadings (0.77 mM). Studies of metathesis reactions using 1,9-cyclohexadecadiene as substrate indicated that the monomer-dimer and monomer-trimer reactions are faster than the dimer-dimer reaction. The use of IL media allowed for the recyclability of the catalyst, although a drop in the yield of dimer generally occurred after the first run. Heterogeneized catalysts, where the IL-catalyst system was immobilised onto silica, resulted in fast reactions leading to poor yields of dimer. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Selected Bronsted acidic ionic liquids were tested as homogeneous catalysts for the dehydration of methanol to dimethyl ether. Ionic liquids incorporating an alkanesulfonic acid as a part of the cation, a complex acidic anion, [A(2)H](-), or both, proved to be good catalysts for this process, providing high conversions and selectivities. Homogeneous catalysis in the liquid state represents a novel approach to dimethyl ether synthesis.
Resumo:
A facile sonochemical method has been developed to prepare very small zinc sulfide nanoparticles (ZnS NPs) of extremely small size about 1. nm in diameter using a set of ionic liquids based on the bis (trifluoromethylsulfonyl) imide anion and different cations of 1-alkyl-3-methyl-imidazolium. The structural features and optical properties of the NPs were determined in depth with X-ray powder diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), Fourier transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS) analysis, and UV-vis absorption spectroscopy. The energy band gap measurements of ZnS NPs were calculated by UV-vis absorption spectroscopy. One of the interesting features of the present work is that the wide band gap semiconductor ZnS nanocrystals were prepared which are used in the fabrication of photonic devices.
Resumo:
This paper reports both the binary and ternary phase behavior of ionic liquids for extracting cyclohexanecarboxylic acid (CCA) from dodecane. This system is a model for the extraction of acids representative of naphthenic acids found in crude oils. In order to develop an effective ternary liquid-liquid extraction system the preliminary selection of ionic liquids was based on CCA miscibility and the dodecane immiscibility with selected ILs. A wide range of ILs based on different cations, anions, cation alkyl-chain length, as well as the effect of temperature on the overall fluid phase behavior is reported. Factors such as variation of cation group, anion effect, alkyl-chain length, and temperature all impact the extraction to various degrees. The largest effects were found to be the lipophilicity of the IL cation and the co-ordination ability of the anion. While CCA capacity increased with lipophilicity of the cation, as did the dodecane. Highly coordinating anions such as trifluoroacetate and triflate demonstrated that highly efficient extraction could be obtained producing favorable tie-lines in the ternary phase diagram. Overall, this study demonstrates that ILs can selectively extract acids from hydrocarbon streams and offers possible treatment solutions for problems associated with the processing of high acid crude oils.
Resumo:
The model room temperature ionic liquid, 1,3-dimethylimidazolium chloride, has been studied by neutron diffraction for the first time. The diffraction data are used to derive a structural model of this liquid using Empirical Potential Structure Refinement. The model obtained indicates that significant charge ordering is present in the liquid salt and that the local order in this liquid closely resembles that found in the solid state. As in the crystal structure, hydrogen-bonding interactions between the ring hydrogens and the chloride dominate the structure. The model is compared with the data reported previously for both simple alkyl substituted imidazolium halides and binary mixtures with AlCl3. (C) 2003 American Institute of Physics.