833 resultados para ionic liq reconstituted cellulose composite solid support matrix transparency
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A composite of cellulose extracted from bagasse with Nb2O5 center dot nH(2)O in three different proportions (16.67, 37.5 and 50.0 wt%) was prepared using the co-precipitation method. The materials were characterized by X-ray diffractometry (XRD), Fourier transform infra-red spectroscopy (FTIR), thermogravimetric analysis (TG/DTG), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). TG data obtained show that the presence of inorganic material influenced slightly the stability of the hybrid material. The precipitation of 16.67 wt.% of oxide was sufficient to inhibit the combustion peaks present in the DSC curve of cellulose. This work will help find new applications for these materials. Published by Elsevier Ltd.
Resumo:
Flexible and free-standing films of piezoelectric composites made up of lead zirconate titanate (PZT) ceramic powder dispersed in a castor oil-based polyurethane (PU) matrix were obtained by spin coating and characterised as materials for sensor applications. The piezoelectric coefficients d(31) and d(33) were measured with the usual technique. The piezoelectric charge constant d(33) yields values up to less than or equal to 24 pC/N, even at lower PZT content (33 vol%). Some desirable properties like piezoelectricity, flexibility and good mechanical resistance show this new material to be a good alternative for use as sensors and actuators.
Resumo:
Flexible piezo- and pyroelectric composite was made in the thin film form by spin coating. Lead Zirconate Titanate (PZT) ceramic powder was dispersed in a castor oil-based polyurethane (PU) matrix, providing a composite with 0-3 connectivity. The dielectric data, measured over a wide range of frequency (10(-5) Hz to 105 Hz), shows a loss peak around 100 Hz related with impurities in the polymer matrix. There is also an evidence of a peak in the range 10(-4) Hz, possibly originating from the glass transition temperature T of the polymer. The pyroelectric coefficient at 34 K is 7.0x10(-5) C(.)m(-2.)K(-1) which is higher than that of P-PVDF (1X10(-5) C(.)m(-2.)K(-1)).
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this work a biodegradable composite using the carnauba straw s powder as reinforcement on chitosan matrix polymeric were manufactured. Firstly, were carried out the chemistry characterization of the carnauba straw s powder before and after treatments with NaOH and hexane. Goering and Van Soest method (1970), flotation test, moisture absorption, FTIR, TG/DTG, DSC and SEM have also being carried out. Composites were developed with variations in granulometry and in powder concentrations. They were characterized by TG/DTG, SEM and mechanicals properties. The results of chemical composition showed that the carnauba straw s powder is composed of 41% of cellulose; 28,9% of hemicellulose and 14% of lignin.The flotation test have indicated that the chemical treatment with NaOH decreased the powder s hidrophilicity.The thermal analysis showed increased of thermal stability of material after treatments. The results of FTIR and SEM revealed the removal of soluble materials from the powder (hemicelluloses and lignin), the material became rougher and clean. The composites obtained showed that the mechanicals properties of the composites were decreased in respect at chitosan films, and the composites with the powder at 150 Mesh showed less variation in the modulus values. The speed test of 10 mm/min showed the better reproducibility of the results and is in agreement to the standard ASTM D638. The SEM analysis of fracture showed the low adhesion between the fiber/matrix. The increase of volume of powder in the composite caused a decrease in values of stress and strain for the samples with untreated powder and treated with hexane. The composite with 50% of the powder s treated in NaOH didn t have significant variation in the values of stress and strain as compared with the composites with 10% of the powder, showing that the increase in the volume of fiber didn t affect the stress and strain of the composite. Thereby, it is concluded that the manufacture of polymeric composites of chitosan using carnauba straw s powder can be done, without need for pre-treatment of reinforcement, become the couple of carnauba straw s powder-chitosan a good alternative for biodegradable composites
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In this work we present a mathematical and computational modeling of electrokinetic phenomena in electrically charged porous medium. We consider the porous medium composed of three different scales (nanoscopic, microscopic and macroscopic). On the microscopic scale the domain is composed by a porous matrix and a solid phase. The pores are filled with an aqueous phase consisting of ionic solutes fully diluted, and the solid matrix consists of electrically charged particles. Initially we present the mathematical model that governs the electrical double layer in order to quantify the electric potential, electric charge density, ion adsorption and chemical adsorption in nanoscopic scale. Then, we derive the microscopic model, where the adsorption of ions due to the electric double layer and the reactions of protonation/ deprotanaç~ao and zeta potential obtained in modeling nanoscopic arise in microscopic scale through interface conditions in the problem of Stokes and Nerst-Planck equations respectively governing the movement of the aqueous solution and transport of ions. We developed the process of upscaling the problem nano/microscopic using the homogenization technique of periodic structures by deducing the macroscopic model with their respectives cell problems for effective parameters of the macroscopic equations. Considering a clayey porous medium consisting of kaolinite clay plates distributed parallel, we rewrite the macroscopic model in a one-dimensional version. Finally, using a sequential algorithm, we discretize the macroscopic model via the finite element method, along with the interactive method of Picard for the nonlinear terms. Numerical simulations on transient regime with variable pH in one-dimensional case are obtained, aiming computational modeling of the electroremediation process of clay soils contaminated
Resumo:
Myofibroblasts are cells that exhibit a hybrid phenotype, sharing the morphological characteristics of fibroblasts and smooth muscle cells, which is acquired during a process called differentiation. These cells then start to express -SMA, a marker that can be used for their identification. Studies suggest that myofibroblasts are related to the aggressiveness of different tumors and that TGF-1 and IFN- play a role in myofibroblast differentiation, stimulating or inhibiting this differentiation, respectively. The objective of this study was to investigate the role of myofibroblasts in epithelial odontogenic tumors, correlating the presence of these cells with the aggressiveness of the tumor. Immunohistochemistry was used to evaluate the expression of TGF-1 and IFN- in myofibroblast differentiation, as well as the expression of MMP-13, which is activated by myofibroblasts, and of EMMPRIN (extracellular matrix metalloproteinase inducer) as a precursor of this MMP. The sample consisted of 20 solid ameloblastomas, 10 unicystic ameloblastomas, 20 odontogenic keratocysts, and 20 adenomatoid odontogenic tumors. For evaluation of myofibroblasts, anti- -SMA-immunoreactive cells were quantified in connective tissue close to the epithelium. Immunoexpression of TGF-1, IFN-, MMP-13 and EMMPRIN was evaluated in the epithelial and connective tissue components, attributing scores of 0 to 4. The results showed a higher concentration of myofibroblasts in solid ameloblastomas (mean of 30.55), followed by odontogenic keratocysts (22.50), unicystic ameloblastomas (20.80), and adenomatoid odontogenic tumors (19.15) (p=0.001). No significant correlation between TGF-1 and IFN- was observed during the process of myofibroblast differentiation. There was also no correlation between the quantity of myofibroblasts and MMP-13 expression. Significant correlations were found between MMP-13 and TGF-1 (r=0.087; p=0.011), between MMP- 13 and IFN- (r=0.348; p=0.003), as well as between EMMPRIN and MMP-13 (r=0.474; p<0.001) and between EMMPRIN and IFN- (r=0.393; p=0.001). The higher quantity of myofibroblasts observed in solid ameloblastomas, odontogenic keratocysts and unicystic ameloblastomas suggests that these cells are one of the factors responsible for the more aggressive biological behavior of these tumors, although the myofibroblast population was not correlated with TGF-1, IFN-, MMP-13 or EMMPRIN. The correlation between MMP- 13 and TGF-1 suggests that the latter induces the expression of this metalloproteinase. The present results also support the well-established role of EMMPRIN as an inducer of MMP-13. Furthermore, the relationship between EMMPRIN and IFN- and between MMP-13 and IFN- suggests synergism in the antifibrotic effect of these markers