992 resultados para internet filtering
Resumo:
Yandex is the dominant search engine in Russia, followed by the world leader Google. This study focuses on the performance differences between the two in search advertising in the context of tourism, by running two identical campaigns and measuring the KPI’s, such as CPA (cost-per-action), on both campaigns. Search engine advertising is a new and fast changing form of advertising, which should be studied frequently in order to keep up with the changes. Research was done as an experimental study in cooperation with a Finnish tourism company and the data is gathered from the clickstream and not from questionnaires, which is recommended method by the literature. The results of the study suggests that Yandex.Direct performed better in the selected niche and that the individual campaign planning for Yandex.Direct and Google AdWords is an important part of the optimization of search advertising in Russia.
Resumo:
This doctoral thesis introduces an improved control principle for active du/dt output filtering in variable-speed AC drives, together with performance comparisons with previous filtering methods. The effects of power semiconductor nonlinearities on the output filtering performance are investigated. The nonlinearities include the timing deviation and the voltage pulse waveform distortion in the variable-speed AC drive output bridge. Active du/dt output filtering (ADUDT) is a method to mitigate motor overvoltages in variable-speed AC drives with long motor cables. It is a quite recent addition to the du/dt reduction methods available. This thesis improves on the existing control method for the filter, and concentrates on the lowvoltage (below 1 kV AC) two-level voltage-source inverter implementation of the method. The ADUDT uses narrow voltage pulses having a duration in the order of a microsecond from an IGBT (insulated gate bipolar transistor) inverter to control the output voltage of a tuned LC filter circuit. The filter output voltage has thus increased slope transition times at the rising and falling edges, with an opportunity of no overshoot. The effect of the longer slope transition times is a reduction in the du/dt of the voltage fed to the motor cable. Lower du/dt values result in a reduction in the overvoltage effects on the motor terminals. Compared with traditional output filtering methods to accomplish this task, the active du/dt filtering provides lower inductance values and a smaller physical size of the filter itself. The filter circuit weight can also be reduced. However, the power semiconductor nonlinearities skew the filter control pulse pattern, resulting in control deviation. This deviation introduces unwanted overshoot and resonance in the filter. The controlmethod proposed in this thesis is able to directly compensate for the dead time-induced zero-current clamping (ZCC) effect in the pulse pattern. It gives more flexibility to the pattern structure, which could help in the timing deviation compensation design. Previous studies have shown that when a motor load current flows in the filter circuit and the inverter, the phase leg blanking times distort the voltage pulse sequence fed to the filter input. These blanking times are caused by excessively large dead time values between the IGBT control pulses. Moreover, the various switching timing distortions, present in realworld electronics when operating with a microsecond timescale, bring additional skew to the control. Left uncompensated, this results in distortion of the filter input voltage and a filter self-induced overvoltage in the form of an overshoot. This overshoot adds to the voltage appearing at the motor terminals, thus increasing the transient voltage amplitude at the motor. This doctoral thesis investigates the magnitude of such timing deviation effects. If the motor load current is left uncompensated in the control, the filter output voltage can overshoot up to double the input voltage amplitude. IGBT nonlinearities were observed to cause a smaller overshoot, in the order of 30%. This thesis introduces an improved ADUDT control method that is able to compensate for phase leg blanking times, giving flexibility to the pulse pattern structure and dead times. The control method is still sensitive to timing deviations, and their effect is investigated. A simple approach of using a fixed delay compensation value was tried in the test setup measurements. The ADUDT method with the new control algorithm was found to work in an actual motor drive application. Judging by the simulation results, with the delay compensation, the method should ultimately enable an output voltage performance and a du/dt reduction that are free from residual overshoot effects. The proposed control algorithm is not strictly required for successful ADUDT operation: It is possible to precalculate the pulse patterns by iteration and then for instance store them into a look-up table inside the control electronics. Rather, the newly developed control method is a mathematical tool for solving the ADUDT control pulses. It does not contain the timing deviation compensation (from the logic-level command to the phase leg output voltage), and as such is not able to remove the timing deviation effects that cause error and overshoot in the filter. When the timing deviation compensation has to be tuned-in in the control pattern, the precalculated iteration method could prove simpler and equally good (or even better) compared with the mathematical solution with a separate timing compensation module. One of the key findings in this thesis is the conclusion that the correctness of the pulse pattern structure, in the sense of ZCC and predicted pulse timings, cannot be separated from the timing deviations. The usefulness of the correctly calculated pattern is reduced by the voltage edge timing errors. The doctoral thesis provides an introductory background chapter on variable-speed AC drives and the problem of motor overvoltages and takes a look at traditional solutions for overvoltage mitigation. Previous results related to the active du/dt filtering are discussed. The basic operation principle and design of the filter have been studied previously. The effect of load current in the filter and the basic idea of compensation have been presented in the past. However, there was no direct way of including the dead time in the control (except for solving the pulse pattern manually by iteration), and the magnitude of nonlinearity effects had not been investigated. The enhanced control principle with the dead time handling capability and a case study of the test setup timing deviations are the main contributions of this doctoral thesis. The simulation and experimental setup results show that the proposed control method can be used in an actual drive. Loss measurements and a comparison of active du/dt output filtering with traditional output filtering methods are also presented in the work. Two different ADUDT filter designs are included, with ferrite core and air core inductors. Other filters included in the tests were a passive du/dtfilter and a passive sine filter. The loss measurements incorporated a silicon carbide diode-equipped IGBT module, and the results show lower losses with these new device technologies. The new control principle was measured in a 43 A load current motor drive system and was able to bring the filter output peak voltage from 980 V (the previous control principle) down to 680 V in a 540 V average DC link voltage variable-speed drive. A 200 m motor cable was used, and the filter losses for the active du/dt methods were 111W–126 W versus 184 W for the passive du/dt. In terms of inverter and filter losses, the active du/dt filtering method had a 1.82-fold increase in losses compared with an all-passive traditional du/dt output filter. The filter mass with the active du/dt method was 17% (2.4 kg, air-core inductors) compared with 14 kg of the passive du/dt method filter. Silicon carbide freewheeling diodes were found to reduce the inverter losses in the active du/dt filtering by 18% compared with the same IGBT module with silicon diodes. For a 200 m cable length, the average peak voltage at the motor terminals was 1050 V with no filter, 960 V for the all-passive du/dt filter, and 700 V for the active du/dt filtering applying the new control principle.
Resumo:
Since the 1990’s, the Internet has played a central role in our daily lives. The Internet is an integral part of our personal, business, family, research, entertainment, academic and social life. However, there are social implications in using the Internet that are dependent on categories such as gender, age, ethnicity and cultural attributes. This social aspect can play a detrimental role in the expression of human anxiety on the Internet. An anxiety is a complex phenomenon that requires further elaboration. Thus, the aim of this thesis is to investigate human anxiety, or specifically, whether Internet anxiety can be conceptualized and measured. This thesis utilizes literature, qualitative and quantitative research methodologies, and a triangulation validation approach to conceptualize and measure the Internet anxiety phenomenon. In particular, the aim is to explore anxiety levels of Internet participants to develop and validate an Internet anxiety scale based on earlier research on Internet anxiety. The results of the dissertation present a two phase study. In Phase I, a smaller set of studies were conducted with a limited sample size. In Phase II, the research topic was investigated using 385 participants. Based on a number of studies or experiments, the state-of-the-art discovered in this thesis is creation, design, and validation of two scales, the Self-Assessment Scale (SAS) and a Modified Internet Anxiety Scale (MIAS) for measuring users’ anxieties on the Internet. The result of this dissertation is a conceptualization and measurement of various types of Internet anxiety and measurement of affective feelings of users on the Internet. As a proof-of-concept of measuring Internet anxiety, this thesis describes the author’s implementation of three sets of tools: MyAnxiety, introducing Internet anxieties types; Intelligentia, for collecting Internet anxieties types; and MyIAControl tool, implemented as a browser plug-in, for measuring affective feelings of users on the Internet. Conclusions drawn from the results show that these empirically validated scales and tools might be useful for researchers and practitioners in understanding and measuring the Internet anxiety phenomenon further.
Resumo:
The overall goal of the study was to describe nurses’ acceptance of an Internet-based support system in the care of adolescents with depression. The data were collected in four phases during the period 2006 – 2010 from nurses working in adolescent psychiatric outpatient clinics and from professionals working with adolescents in basic public services. In the first phase, the nurses’ anticipated perceptions of the usefulness of the Internet-based support system before its implementation was explored. In the second phase, the nurses’ perceived ease of computer and Internet use and attitudes toward it were explored. In the third phase, the features of the support system and its implementation process were described. In the fourth phase, the nurses’ experiences of behavioural intention and actual system use of the Internet-based support were described in psychiatric out-patient care after one year use. The Technology Acceptance Model (TAM) was used to structure the various research phases. Several benefits were identified from the nurses’ perspective in using the Internet-based support system in the care of adolescents with depression. The nurses’ technology skills were good and their attitudes towards computer use were positive. The support system was developed in various phases to meet the adolescents’ needs. Before the implementation of the information technology (IT)-based support system, it is important to pay attention to the nurses’ IT-training, technology support, resources, and safety as well as ethical issues related to the support system. After one year of using the system, the nurses perceived the Internet-based support system to be useful in the care of adolescents with depression. The adolescents’ independent work with the support system at home and the program’s systematic character were experienced as conducive from the point of view of the treatment. However, the Internet-based support system was integrated only partly into the nurseadolescent interaction even though the nurses’ perceptions of it were positive. The use of the IT-based system as part of the adolescents’ depression care was seen positively and its benefits were recognized. This serves as a good basis for future IT-based techniques. Successful implementations of IT-based support systems need a systematic implementation plan and commitment from the part of the organization and its managers. Supporting and evaluating the implementation of an IT-based system should pay attention to changing the nurses’ work styles. Health care organizations should be offered more flexible opportunities to utilize IT-based systems in direct patient care in the future.
Resumo:
We have studied the metabolism of diglycine and triglycine in the isolated non-filtering rat kidney. Kidneys from adult male Wistar Kyoto rats weighing 250-350 g were perfused with Krebs-Henseleit solution containing either 1 mM diglycine or triglycine. The analysis of the peptide residues and their components was performed using an amino acid microanalyzer utilizing ion exchange chromatography. Diglycine was degraded to a final concentration of 0.09 mM after 120 min (91%); this degradation occurred predominantly during the first hour, with a 56% reduction of the initial concentration. The metabolism of triglycine occurred similarly, with a final concentration of 0.18 mM (82%); during the first hour there was a 67% reduction of the initial concentration of the tripeptide. Both peptides produced glycine in increasing concentrations, but there was a slightly lower recovery of glycine, suggesting its utilization by the kidney as fuel. The hydrolysis of triglycine also produced diglycine, which was also hydrolyzed to glycine. The results of the present study show the existence of functional endothelial or contraluminal membrane peptidases which may be important during parenteral nutrition.
Resumo:
This thesis is concerned with the state and parameter estimation in state space models. The estimation of states and parameters is an important task when mathematical modeling is applied to many different application areas such as the global positioning systems, target tracking, navigation, brain imaging, spread of infectious diseases, biological processes, telecommunications, audio signal processing, stochastic optimal control, machine learning, and physical systems. In Bayesian settings, the estimation of states or parameters amounts to computation of the posterior probability density function. Except for a very restricted number of models, it is impossible to compute this density function in a closed form. Hence, we need approximation methods. A state estimation problem involves estimating the states (latent variables) that are not directly observed in the output of the system. In this thesis, we use the Kalman filter, extended Kalman filter, Gauss–Hermite filters, and particle filters to estimate the states based on available measurements. Among these filters, particle filters are numerical methods for approximating the filtering distributions of non-linear non-Gaussian state space models via Monte Carlo. The performance of a particle filter heavily depends on the chosen importance distribution. For instance, inappropriate choice of the importance distribution can lead to the failure of convergence of the particle filter algorithm. In this thesis, we analyze the theoretical Lᵖ particle filter convergence with general importance distributions, where p ≥2 is an integer. A parameter estimation problem is considered with inferring the model parameters from measurements. For high-dimensional complex models, estimation of parameters can be done by Markov chain Monte Carlo (MCMC) methods. In its operation, the MCMC method requires the unnormalized posterior distribution of the parameters and a proposal distribution. In this thesis, we show how the posterior density function of the parameters of a state space model can be computed by filtering based methods, where the states are integrated out. This type of computation is then applied to estimate parameters of stochastic differential equations. Furthermore, we compute the partial derivatives of the log-posterior density function and use the hybrid Monte Carlo and scaled conjugate gradient methods to infer the parameters of stochastic differential equations. The computational efficiency of MCMC methods is highly depend on the chosen proposal distribution. A commonly used proposal distribution is Gaussian. In this kind of proposal, the covariance matrix must be well tuned. To tune it, adaptive MCMC methods can be used. In this thesis, we propose a new way of updating the covariance matrix using the variational Bayesian adaptive Kalman filter algorithm.
Resumo:
Ventricular late potentials are low-amplitude signals originating from damaged myocardium and detected on the body surface by ECG filtering and averaging. Digital filters present in commercial equipment may interfere with the ability of arrhythmia stratification. We compared 40-Hz BiSpec (BI) and classical 40- to 250-Hz band-pass Butterworth bidirectional (BD) filters in terms of impact on time domain variables and diagnostic properties. In a transverse retrospective age-adjusted case-control study, 221 subjects with sinus rhythm without bundle branch block were divided into three groups after signal-averaged ECG acquisition: GI (N = 40), clinically normal controls, GII (N = 158), subjects with coronary heart disease without sustained monomorphic ventricular tachycardia (SMVT), and GIII (N = 23), subjects with heart disease and documented SMVT. Conventional variables analyzed from vector magnitude data after averaging to 0.3 µV final noise were obtained by application of each filter to the averaged signal, and evaluated in pairs by numerical comparison and by diagnostic agreement assessment, using conventional and optimized thresholds of normality. Significant differences were found between BI and BD variables in all groups, with diagnostic results showing significant disagreement between both filters [kappa value of 0.61 (P<0.05) for GII and 0.31 for GIII (P = NS)]. Sensitivity for SMVT was lower with BI than with BD (65.2 vs 91.3%, respectively, P<0.05). Filters provided significantly different numerical and diagnostic results and the BI filter showed only limited clinical application to risk stratification of ventricular arrhythmia.
Resumo:
TIIVISTELMÄ Lappeenrannan teknillinen yliopisto Teknistaloudellinen tiedekunta Tuotantotalouden koulutusohjelma Seppo Kuittinen Teollinen Internet uuden liiketoiminnan katalysaattorina Case CGI Diplomityö 2015 78 sivua, 33 kuvaa, 1 taulukko, 1 liite Työn tarkastajat: Professori Timo Pihkala Tutkijatohtori Marita Rautiainen Hakusanat: teollinen internet, IoT, kehittynyt analytiikka, sensorit Keywords: Industrial internet, IoT, advanced analytics, sencors Tämän työn tarkoituksena on tutkia asiakaskyselyn avulla luoko teollinen internet case yritykselle uutta ohjelmisto- tai palveluliiketoimintaa. Case yritys valitsi omasta asiakaskunnastaan 15 kohdeasiakasta, joille kysely lähetettiin. Vastauksista käy ilmi, että asiakaskunnassa on näkemys siitä, mitä teollinen internet on. Nykyisten ratkaisujen ei nähdä ratkaisevan kaikkia teollisen internetin mukanaan tuomia ongelmia. Ongelmaksi koetaan sensoridatan analysointi, jonka ei vielä katsota olevan riittävän kehittynyttä ja luotettavaa. Kyselystä voidaan päätellä, ettei mitään räjähtävää kasvua ole odotettavissa lähiaikoina. Teollinen internet tulee olemaan osa yritysten liiketoimintaa, mutta sen käyttö laajenee pikkuhiljaa.
Resumo:
Internet of Things (IoT) technologies are developing rapidly, and therefore there exist several standards of interconnection protocols and platforms. The existence of heterogeneous protocols and platforms has become a critical challenge for IoT system developers. To mitigate this challenge, few alliances and organizations have taken the initiative to build a framework that helps to integrate application silos. Some of these frameworks focus only on a specific domain like home automation. However, the resource constraints in the large proportion of connected devices make it difficult to build an interoperable system using such frameworks. Therefore, a general purpose, lightweight interoperability framework that can be used for a range of devices is required. To tackle the heterogeneous nature, this work introduces an embedded, distributed and lightweight service bus, Lightweight IoT Service bus Architecture (LISA), which fits inside the network stack of a small real-time operating system for constrained nodes. LISA provides a uniform application programming interface for an IoT system on a range of devices with variable resource constraints. It hides platform and protocol variations underneath it, thus facilitating interoperability in IoT implementations. LISA is inspired by the Network on Terminal Architecture, a service centric open architecture by Nokia Research Center. Unlike many other interoperability frameworks, LISA is designed specifically for resource constrained nodes and it provides essential features of a service bus for easy service oriented architecture implementation. The presented architecture utilizes an intermediate computing layer, a Fog layer, between the small nodes and the cloud, thereby facilitating the federation of constrained nodes into subnetworks. As a result of a modular and distributed design, the part of LISA running in the Fog layer handles the heavy lifting to assist the lightweight portion of LISA inside the resource constrained nodes. Furthermore, LISA introduces a new networking paradigm, Node Centric Networking, to route messages across protocol boundaries to facilitate interoperability. This thesis presents a concept implementation of the architecture and creates a foundation for future extension towards a comprehensive interoperability framework for IoT.