995 resultados para interferon-beta


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Extended-spectrum beta-lactamase (ESBL)-producing members of the Enterobacteriaceae family are important nosocomial pathogens. Escherichia coli producing a specific family of ESBL (the CTX-M enzymes) are emerging worldwide. The epidemiology of these organisms as causes of nosocomial infection is poorly understood. The aims of this study were to investigate the clinical and molecular epidemiology of nosocomial infection or colonization due to ESBL-producing E. coli in hospitalized patients, consider the specific types of ESBLs produced, and identify the risk factors for infection and colonization with these organisms. METHODS: All patients with nosocomial colonization and/or infection due to ESBL-producing E. coli in 2 centers (a tertiary care hospital and a geriatric care center) identified between January 2001 and May 2002 were included. A double case-control study was performed. The clonal relatedness of the isolates was studied by repetitive extragenic palindromic-polymerase chain reaction and pulsed-field gel electrophoresis. ESBLs were characterized by isoelectric focusing, polymerase chain reaction, and sequencing. RESULTS: Forty-seven case patients were included. CTX-M-producing E. coli were clonally unrelated and more frequently susceptible to nonoxyimino-beta-lactams. Alternately, isolates producing SHV- and TEM-type ESBL were epidemic and multidrug resistant. Urinary catheterization was a risk factor for both CTX-M-producing and SHV-TEM-producing isolates. Previous oxyimino-beta-lactam use, diabetes, and ultimately fatal or nonfatal underlying diseases were independent risk factors for infection or colonization with CTX-M-producing isolates, whereas previous fluoroquinolone use was associated with infection or colonization with SHV-TEM-producing isolates. CONCLUSIONS: The epidemiology of ESBL-producing E. coli as a cause of nosocomial infection is complex. Sporadic CTX-M-producing isolates coexisted with epidemic multidrug-resistant SHV-TEM-producing isolates. These data should be taken into account for the design of control measures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pancreatic beta-cell apoptosis is known to participate in the beta-cell destruction process that occurs in diabetes. It has been described that high glucose level induces a hyperfunctional status which could provoke apoptosis. This phenomenon is known as glucotoxicity and has been proposed that it can play a role in type 1 diabetes mellitus pathogenesis. In this study we develop an experimental design to sensitize pancreatic islet cells by high glucose to streptozotocin (STZ) and proinflammatory cytokines [interleukin (IL)-1beta, tumor necrosis factor (TNF)-alpha and interferon (IFN)-gamma]-induced apoptosis. This method is appropriate for subsequent quantification of apoptotic islet cells stained with Tdt-mediated dUTP Nick-End Labeling (TUNEL) and protein expression assays by Western Blotting (WB).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Islet adaptations to pregnancy were explored in C57BL6/J mice lacking functional receptors for glucagon-like peptide 1 (GLP-1) and gastric inhibitory polypeptide (GIP). Pregnant wild type mice and GIPRKO mice exhibited marked increases in islet and beta cell area, numbers of medium/large sized islets, with positive effects on Ki67/Tunel ratio favouring beta cell growth and enhanced pancreatic insulin content. Alpha cell area and glucagon content were unchanged but prohormone convertases PC2 and PC1/3 together with significant amounts of GLP-1 and GIP were detected in alpha cells. Knockout of GLP-1R abolished these islet adaptations and paradoxically decreased pancreatic insulin, GLP-1 and GIP. This was associated with abolition of normal pregnancy-induced increases in plasma GIP, L-cell numbers, and intestinal GIP and GLP-1 stores. These data indicate that GLP-1 but not GIP is a key mediator of beta cell mass expansion and related adaptations in pregnancy, triggered in part by generation of intra-islet GLP-1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The observation of non-random phylogenetic distribution of traits in communities provides evidence for niche-based community assembly. Environment may influence the phylogenetic structure of communities because traits determining how species respond to prevailing conditions can be phylogenetically conserved. In this study, we investigate the variation of butterfly species richness and of phylogenetic - and -diversities along temperature and plant species richness gradients. Our study indicates that butterfly richness is independently positively correlated to temperature and plant species richness in the study area. However, the variation of phylogenetic - and -diversities is only correlated to temperature. The significant phylogenetic clustering at high elevation suggests that cold temperature filters butterfly lineages, leading to communities mostly composed of closely related species adapted to those climatic conditions. These results suggest that in colder and more severe conditions at high elevations deterministic processes and not purely stochastic events drive the assemblage of butterfly communities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: In this study, we investigated the expression of the gene encoding beta-galactosidase (Glb)-1-like protein 3 (Glb1l3), a member of the glycosyl hydrolase 35 family, during retinal degeneration in the retinal pigment epithelium (RPE)-specific 65-kDa protein knockout (Rpe65(-/-)) mouse model of Leber congenital amaurosis (LCA). Additionally, we assessed the expression of the other members of this protein family, including beta-galactosidase-1 (Glb1), beta-galactosidase-1-like (Glb1l), and beta-galactosidase-1-like protein 2 (Glb1l2).Methods: The structural features of Glb1l3 were assessed using bioinformatic tools. mRNA expression of Glb-related genes was investigated by oligonucleotide microarray, real-time PCR, and reverse transcription (RT) -PCR. The localized expression of Glb1l3 was assessed by combined in situ hybridization and immunohistochemistry.Results: Glb1l3 was the only Glb-related member strongly downregulated in Rpe65(-/-) retinas before the onset and during progression of the disease. Glb1l3 mRNA was only expressed in the retinal layers and the RPE/choroid. The other Glb-related genes were ubiquitously expressed in different ocular tissues, including the cornea and lens. In the healthy retina, expression of Glb1l3 was strongly induced during postnatal retinal development; age-related increased expression persisted during adulthood and aging.Conclusions: These data highlight early-onset downregulation of Glb1l3 in Rpe65-related disease. They further indicate that impaired expression of Glb1l3 is mostly due to the absence of the chromophore 11-cis retinal, suggesting that Rpe65 deficiency may have many metabolic consequences in the underlying neuroretina.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The host immune response plays an important role in viral clearance in patients who are chronically infected with hepatitis C virus (HCV) and are treated with interferon and ribavirin. Activation of the immune system involves the release of pro and anti-inflammatory molecules that can be measured in plasma samples. The present study aimed to evaluate the association between pretreatment plasma levels of chemokines and soluble tumor necrosis factor receptors (sTNF-R) and the virological response in treated patients with chronic hepatitis C infection. Forty-one chronically-infected HCV patients that were being treated with interferon-α (IFN-α) plus ribavirin were included in the study. Socio-demographic, clinical and laboratory data were collected and pretreatment plasma levels of chemokine CCL2, CCL3, CCL11, CCL24, chemokine CXCL9, CXCL10, sTNF-R1 and sTNF-R2 were measured. The virological response was assessed at treatment week 12, at the end of treatment and 24 weeks after treatment. Pretreatment CXCL10 levels were significantly higher in patients without an early virological response (EVR) or sustained virological response (SVR) compared to responders [512.9 pg/mL vs. 179.1 pg/mL (p = 0.011) and 289.9 pg/mL vs. 142.7 pg/mL (p = 0.045), respectively]. The accuracy of CXCL10 as a predictor of the absence of EVR and SVR was 0.79 [confidence interval (CI) 95%: 0.59-0.99] and 0.69 (CI 95%: 0.51-0.87), respectively. Pretreatment plasma levels of the other soluble inflammatory markers evaluated were not associated with a treatment response. Pretreatment CXCL10 levels were predictive of both EVR and SVR to IFN-α and ribavirin and may be useful in the evaluation of candidates for therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

GLP-1 protects β-cells against apoptosis by still incompletely understood mechanisms. In a recent study, we searched for novel anti-apoptotic pathways by performing comparative transcriptomic analysis of islets from Gipr-/-;Glp-1r-/- mice, which show increased susceptibility to cytokine-induced apoptosis. We observed a strong reduction in IGF-1R expression in the knockout islets suggesting a link between the gluco-incretin and IGF-1R signaling pathways. Using MIN6 and primary islet cells, we demonstrated that GLP-1 strongly stimulates IGF-1R expression and that activation of the IGF-1R/Akt signaling pathway required active secretion of IGF-2 by the β-cells. We showed that inactivation of the IGF-1 receptor gene in β-cells or preventing its up-regulation by GLP-1, as well as suppressing IGF-2 expression or action, blocked the protective effect of GLP-1 against cytokine-induced apoptosis. Thus, an IGF-2/IGF-1 receptor autocrine loop operates in β-cells and GLP-1 increases its activity by enhancing IGF-1R expression and by stimulating IGF-2 secretion. This mechanism is required for GLP-1 to protect β-cells against apoptosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multinucleated giant cells (MGC) are cells present in characteristic granulomatous inflammation induced by intracellular infectious agents or foreign materials. The present study evaluated the modulatory effect of granulocyte macrophage colony-stimulating factor (GM-CSF) in association with other cytokines such as interferon-gamma (IFN-γ), tumour necrosis factor-alpha, interleukin (IL)-10 or transforming growth factor beta (TGF-β1) on the formation of MGC from human peripheral blood monocytes stimulated with Paracoccidioides brasiliensis antigen (PbAg). The generation of MGC was determined by fusion index (FI) and the fungicidal activity of these cells was evaluated after 4 h of MGC co-cultured with viable yeast cells of P. brasiliensis strain 18 (Pb18). The results showed that monocytes incubated with PbAg and GM-CSF plus IFN-γ had a significantly higher FI than in all the other cultures, while the addition of IL-10 or TGF-β1 had a suppressive effect on MGC generation. Monocytes incubated with both pro and anti-inflammatory cytokines had a higher induction of foreign body-type MGC rather than Langhans-type MGC. MGC stimulated with PbAg and GM-CSF in association with the other cytokines had increased fungicidal activity and the presence of GM-CSF also partially inhibited the suppressive effects of IL-10 and TGF-β1. Together, these results suggest that GM-CSF is a positive modulator of PbAg-stimulated MGC generation and on the fungicidal activity against Pb18.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A high prevalence of occult hepatitis B (OHB) genotype H infections has been observed in the native Mexican Nahua population. In addition, a low incidence of hepatitis B virus (HBV)-associated hepatocellular carcinoma has been described in Mexico. The immune response to infection among OHB-infected patients has been poorly evaluated in vivo. Therefore, we assessed the expression profiles of 23 cytokines in OHB genotype H-infected Nahua patients. A total of 41 sera samples from natives of the Nahua community were retrospectively analysed. Based on their HBV antibody profiles, patients were stratified into two groups: OHB patients (n = 21) and patients that had recovered from HBV infection (n = 20). Herein, we report distinctive cytokines profiles in OHB-infected individuals. Compared to healthy controls (n = 20) and patients who resolved HBV infection, OHB-infected patients displayed an increase in interleukin (IL)-2 secretion in addition to a characteristic inflammation profile (decrease in IL-8 and tumour necrosis factor-alpha levels and increased levels of tumour growth factor-beta). IL-15 and interferon-gamma levels were reduced in OHB-infected individuals when compared to those patients who resolved HBV infection. In contrast, OHB patients showed an increase in monocyte chemoattractant protein (MCP)-1 and MCP-2 compared to healthy controls and patients who resolved HBV infection. These findings suggest that cytokine expression can influence the severity of OHB disease and could lead to new investigation into the treatment of liver and other infectious diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single nucleotide polymorphisms (SNPs) in the interleukin (IL)28B locus have been associated with a sustained virological response (SVR) in interferon-ribavirin (IFN-RBV)-treated chronic hepatitis C virus (HCV)-infected patients in European and African populations. In this study, the genotype frequency of two IL28B SNPs (rs129679860 and rs8099917) in a cohort of chronic HCV-monoinfected patients in Brazil was evaluated and the SNP sufficient to predict the treatment response outcome was determined. A total of 66 naïve genotype-1 chronic HCV-infected patients were genotyped and the associated viral kinetics and SVR were assessed. The overall SVR was 38%. Both the viral kinetics and SVR were associated with rs129679860 genotypes (CC = 62% vs. CT = 33% vs. TT = 18%, p = 0.016). However, rs8099917 genotypes were only associated with SVR (TT = 53% vs. TG = 33% vs. GG = 18%; p = 0.032). In this population, the analysis of a single SNP, rs12979860, successfully predicts SVR in the IFN-RBV treatment of HCV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of exendin-(9-39), a described antagonist of the glucagon-like peptide-1 (GLP-1) receptor, was evaluated on the formation of cAMP- and glucose-stimulated insulin secretion (GSIS) by the conditionally immortalized murine betaTC-Tet cells. These cells have a basal intracellular cAMP level that can be increased by GLP-1 with an EC50 of approximately 1 nM and can be decreased dose dependently by exendin-(9-39). This latter effect was receptor dependent, as a beta-cell line not expressing the GLP-1 receptor was not affected by exendin-(9-39). It was also not due to the endogenous production of GLP-1, because this effect was observed in the absence of detectable preproglucagon messenger RNA levels and radioimmunoassayable GLP-1. Importantly, GSIS was shown to be sensitive to this basal level of cAMP, as perifusion of betaTC-Tet cells in the presence of exendin-(9-39) strongly reduced insulin secretion. This reduction of GSIS, however, was observed only with growth-arrested, not proliferating, betaTC-Tet cells; it was also seen with nontransformed mouse beta-cells perifused in similar conditions. These data therefore demonstrated that 1) exendin-(9-39) is an inverse agonist of the murine GLP-1 receptor; 2) the decreased basal cAMP levels induced by this peptide inhibit the secretory response of betaTC-Tet cells and mouse pancreatic islets to glucose; 3) as this effect was observed only with growth-arrested cells, this indicates that the mechanism by which cAMP leads to potentiation of insulin secretion is different in proliferating and growth-arrested cells; and 4) the presence of the GLP-1 receptor, even in the absence of bound peptide, is important for maintaining elevated intracellular cAMP levels and, therefore, the glucose competence of the beta-cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND & AIMS: The peroxisome proliferator-activated nuclear receptors (PPAR-alpha, PPAR-beta, and PPAR-gamma), which modulate the expression of genes involved in energy homeostasis, cell cycle, and immune function, may play a role in hepatic stellate cell activation. Previous studies focused on the decreased expression of PPAR-gamma in hepatic stellate cell activation but did not investigate the expression and role of the PPAR-alpha and -beta isotypes. The aim of this study was to evaluate the expression of the different PPARs during hepatic stellate cell activation in vitro and in situ and to analyze possible factors that might contribute to their expression. In a second part of the study, the effect of a PPAR-beta agonist on acute liver injury was evaluated. METHODS: The effects of PPAR isotype-specific ligands on hepatic stellate cell transition were evaluated by bromodeoxyuridine incorporation, gel shifts, immunoprecipitation, and use of antisense PPAR-beta RNA-expressing adenoviruses. Tumor necrosis factor alpha-induced PPAR-beta phosphorylation and expression was evaluated by metabolic labeling and by using specific P38 inhibitors. RESULTS: Hepatic stellate cells constitutively express high levels of PPAR-beta, which become further induced during culture activation and in vivo fibrogenesis. No significant expression of PPAR-alpha or -gamma was found. Stimulation of the P38 mitogen-activated protein kinase pathway modulated the expression of PPAR-beta. Transcriptional activation of PPAR-beta by L165041 enhanced hepatic stellate cell proliferation. Treatment of rats with a single bolus of CCl(4) in combination with L165041 further enhanced the expression of fibrotic markers. CONCLUSIONS: PPAR-beta is an important signal-transducing factor contributing to hepatic stellate cell proliferation during acute and chronic liver inflammation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The liver of C57BL/6 mice contains a major subset of CD4+8- and CD4-8- T cell receptor (TCR)-alpha/beta+ cells expressing the polymorphic natural killer NK1.1 surface marker. Liver NK1.1+TCR-alpha/beta+ (NK1+ T) cells require interaction with beta2-microglobulin-associated, major histocompatibility complex I-like molecules on hematopoietic cells for their development and have a TCR repertoire that is highly skewed to Vbeta8.2, Vbeta7, and Vbeta2. We show here that congenic C57BL/6.Vbeta(a) mice, which lack Vbeta8- expressing T cells owing to a genomic deletion at the Vbeta locus, maintain normal levels of liver NK1+ T cells owing to a dramatic increase in the proportion of cells expressing Vbeta7 and Vbeta2 (but not other Vbetas). Moreover, in C57BL/6 congenic TCR-V Vbeta3 and -Vbeta8.1 transgenic mice (which in theory should not express other Vbeta, owing to allelic exclusion at the TCR-beta locus), endogenous TCR-Vbeta8.2, Vbeta7, and Vbeta2 (but not other Vbetas) are frequently expressed on liver NK1+T cells but absent on lymph node T cells. Finally, when endogenous V beta expression is prevented in TCR-Vbeta3 and Vbeta8.1 transgenic mice (by introduction of a null allele at the C beta locus), the development of liver NK1+T cells is totally abrogated. Collectively, our data indicate that liver NK1+T cells have a stringent requirement for expression of TCR-Vbeta8.2, Vbeta7, or Vbeta2 for their development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

T cell factor-1 (Tcf-1) is a transcription factor that binds to a sequence motif present in several T cell-specific enhancer elements. In Tcf-1-deficient (Tcf-1-/-) mice, thymocyte development is partially blocked at the transition from the CD4-8+ immature single-positive stage to the CD4+8+ double-positive stage, resulting in a marked decrease of mature peripheral T cells in lymph node and spleen. We report here that the development of most intestinal TCR gamma delta+ cells and liver CD4+ NK1.1+TCR alpha beta+ (NK1+T) cells, which are believed to be of extrathymic origin, is selectively impaired in Tcf-1-/- mice. In contrast, thymic and thymus-derived (splenic) TCR gamma delta+ cells are present in normal numbers in Tcf-1-/- mice, as are other T cell subsets in intestine and liver. Collectively, our data suggest that Tcf-1 is differentially required for the development of some extrathymic T cell subsets, including intestinal TCR gamma delta+ cells and liver CD4+ NK1+T cells.