598 resultados para insecticides
Resumo:
Ecological risk assessment (ERA) is a framework for monitoring risks of exposure and adverse effects of environmental stressors to populations or communities of interest. One tool of ERA is the biomarker, which is a characteristic of an organism that reliably indicates exposure to or effects of a stressor like chemical pollution. Traditional biomarkers which rely on characteristics at the tissue level and higher often detect only acute exposures to stressors. Sensitive molecular biomarkers may detect lower stressor levels than traditional biomarkers, which helps inform risk mitigation and restoration efforts before populations and communities are irreversibly affected. In this study I developed gene expression-based molecular biomarkers of exposure to metals and insecticides in the model toxicological freshwater amphipod Hyalella azteca. My goals were to not only create sensitive molecular biomarkers for these chemicals, but also to show the utility and versatility of H. azteca in molecular studies for toxicology and risk assessment. I sequenced and assembled the H. azteca transcriptome to identify reference and stress-response gene transcripts suitable for expression monitoring. I exposed H. azteca to sub-lethal concentrations of metals (cadmium and copper) and insecticides (DDT, permethrin, and imidacloprid). Reference genes used to create normalization factors were determined for each exposure using the programs BestKeeper, GeNorm, and NormFinder. Both metals increased expression of a nuclear transcription factor (Cnc), an ABC transporter (Mrp4), and a heat shock protein (Hsp90), giving evidence of general metal exposure signature. Cadmium uniquely increased expression of a DNA repair protein (Rad51) and increased Mrp4 expression more than copper (7-fold increase compared to 2-fold increase). Together these may be unique biomarkers distinguishing cadmium and copper exposures. DDT increased expression of Hsp90, Mrp4, and the immune response gene Lgbp. Permethrin increased expression of a cytochrome P450 (Cyp2j2) and decreased expression of the immune response gene Lectin-1. Imidacloprid did not affect gene expression. Unique biomarkers were seen for DDT and permethrin, but the genes studied were not sensitive enough to detect imidacloprid at the levels used here. I demonstrated that gene expression in H. azteca detects specific chemical exposures at sub-lethal concentrations, making expression monitoring using this amphipod a useful and sensitive biomarker for risk assessment of chemical exposure.
Resumo:
Silverleaf whitefly (SLW) is a major late season pest of cotton due to its potential to contaminate cotton lint with honeydew. To prevent this, management is often reliant on the use of insecticides to control SLW populations. With selection pressure SLW develop resistance to insecticides they are exposed to, resulting in spray failures. Our lab tests resistance levels in SLW populations collected from across the cotton industry. In this presentation I will provide an update of emerging SLW resistance issues the cotton industry is facing.
Resumo:
International audience
Resumo:
A aplicação de agrotóxicos nas práticas agrícolas aumentou muito nos últimos anos. Isto vem ocorrendo devido ao crescimento populacional, demandando maior produção de alimentos. O uso de agrotóxicos e seus resíduos tornaram-se um problema devido a possível contaminação das águas de superfície e subterrânea, podendo impactar o meio ambiente e causar danos à saúde pública. Na cidade de Rio Grande, RS, Brasil, o suprimento de água potável é realizado pela CORSAN (Companhia Riograndense de Saneamento), que capta a água do Canal São Gonçalo, o qual estabelece uma ligação entre as duas lagoas: Lagoa dos Patos e Lagoa Mirim. Em suas margens há também a captação de água para irrigação das culturas agrícolas. Esta interação entre o uso da água das lagoas e a agricultura, pode resultar na contaminação das águas que são captadas para abastecimento dos municípios situados na região. Uma metodologia analítica empregando Extração em Fase Sólida (SPE) e Cromatografia Líquida acoplada a uma fonte de ionização por Electrospray tandem Espectrometria de Massas (LCESI-MS/MS) foi desenvolvida e validada para a determinação de dezoito agrotóxicos multiclasses (herbicidas, inseticidas e fungicidas) e dois metabólitos em amostras de água superficial e de abastecimento público. Esta metodologia foi aplicada para monitoramento durante dez meses na água superficial do Canal São Gonçalo e na água de consumo da cidade de Rio Grande, após o tratamento pela CORSAN. Os agrotóxicos selecionados foram: clomazona, bispiribaque-sódio, diurom, atrazina, simazina, imazetapir, imazapique, metsulfuron-metílico, quincloraque, penoxsulam, 2,4-D, pirazosulfuron-etílico, bentazona, propanil, irgarol, tebuconazol, fipronil e carbofurano. Os metabólitos foram: 3,4-DCA e 3-hidroxicarbofurano. Os limites de detecção do método variaram entre 0,4 – 40,0 ng L -1 , enquanto para os limites de quantificação a variação foi de 4,0 – 100,0 ng L -1 . Todos os compostos apresentaram excelente linearidade, com coeficiente de determinação maior do que 0,99. As recuperações empregando SPE com cartuchos contendo 500 mg de C18ec, variaram entre 70 a 120%, para 95% dos compostos, apresentando %RSD 20%. Através do monitoramento de múltiplas reações (MRM), duas transições diferentes (íon precursor – íon produto) foram selecionadas para cada composto, uma para quantificação e outra para confirmação, o que aumentou a seletividade do método. Para as amostras analisadas, foram detectados agrotóxicos nível de ng L -1 . O método desenvolvido é sensível, rápido e apresenta elevada seletividade, permitindo a identificação e a quantificação dos agrotóxicos em águas superficiais e de abastecimento público, atendendo os níveis requeridos pelos órgãos reguladores como da União Européia (98/83/EC) e do Brasil segundo a Portaria Nº. 518 (25/03/2004).
Resumo:
The fruit fly Ceratitis capitata is considered the most destructive pest of the world fruitculture. Many pest management practices, mainly based on agrochemicals, have been developed to allow the world-wide commerce of fruit. Solutions to decrease the use of synthetic insecticides in agriculture are based on the development of new target-specific compounds which cause less damage to the environment, especially vegetal proteins with insecticidal effects. The aim of this work was to evaluate the deleterious effect of a purified vicilin of E. velutina (EvV) seeds to C. capitata larvae and adult insects and to investigate the mechanisms involved in these effects. EvV was purified, characterized and its deleterious effect was tested in bioassay systems. EvV mechanism of action was determined by immunodetection techniques and fluorescence localization in chitin structures that are present in C. capitata digestory system. EvV is a glycoprotein with affinity to chitin. Its molecular weight, of 216,57 kDa, was determined by gel filtration chromatography in FPLC system. Using SDS-PAGE, it was possible to observe EvV dissociation in two main subunits of 54,8 and 50,8 kDa. When it was submitted to eletrophoresis in native conditions, EvV presented only one band of acid characteristic. The WD50 and LD50 values found in the bioassays were 0,13% and 0,14% (w/w), respectively for the larvae. EvV deleterious effects were related to the binding to chitin structures presented in peritrophic membrane and gut epithelial cells, associated with its low digestibility in C. capitata digestive tract. The results described herein are the first demonstration of the larvicidal effects of plant protein on C. capitata larvae. EvV may be part of the pest management programs, in the toxic bait composition, or an alternative in plant improvement program
Resumo:
Aphids cause significant losses in many agricultural crops and in many cases cause repeated insecticide sprays, which increase the risk of resistance. Therefore, other alternatives are needed to control them. The toxic, antireproductive, and feeding deterrent effects of a mannosebinding lectin isolated from bulbs of Phycella australis Ravenna (Amaryllidaceae), named Phycella australis agglutinin (PAA) was assayed on nymphs of the aphids Acyrthosiphon pisum Harris and Myzus persicae Sulzer fed with an artificial diet. After 72 h of PAA exposure, lethal concentration (LC50) values were 109 and 313 μg mL-1 for A. pisum and M. persicae, respectively, while LC90 values were 248 and 634 μg mL-1. Sub-lethal concentrations of PAA significantly reduced the aphid fecundity at a concentration of 80 μg mL-1. Only a total of 5.7 descendants per female were recorded for A. pisum (32% control progeny) and 12.4 for M. persicae (39% control progeny). Acyrthosiphon pisum was strongly deterred by PAA under choice conditions, as after 72 h exposed to 80 μg PAA mL-1 of diet, the feeding deterrent index was 0.91 for A. pisum and only 0.38 for M. persicae. In conclusion, the mannosebinding lectin isolated from bulbs of P. australis showed acute and chronical insecticidal activity against the pea and green peach aphids.
Resumo:
Western flower thrips (WFT), Frankliniella occidentalis (Pergande), is an important pest of vegetable crops worldwide and has developed resistance to many insecticides. The predatory mites Neoseiulus (=Amblyseius) cucumeris (Oudemans), the entomopathogenic fungus Metarhizium anisopliae (Metsch.), and an insecticide (imidacloprid) were tested for their efficacy to reduce WFT population density and damage to French bean (Phaseolus vulgaris L.) pods under field conditions in two planting periods. Metarhizium anisopliae was applied as a foliar spray weekly at a rate of one litre spray volume per plot while imidacloprid was applied as a soil drench every two weeks at a rate of two litres of a mixture of water and imidacloprid per m(2). Neoseiulus cucumeris was released every two weeks on plant foliage at a rate of three mites per plant. Single and combined treatment applications reduced WFT population density by at least three times and WFT damage to French bean pods by at least 1.7 times compared with untreated plots. The benefit-cost ratios in management of WFT were profitable with highest returns realized on imidacloprid treated plots. The results indicate that M. anisopliae, N. cucumeris, and imidacloprid have the potential for use in developing an integrated pest management program against WFT on French beans.
Resumo:
Glutathione transferases (GSTs) are a diverse family of enzymes that catalyze the glutathione-dependent detoxification of toxic compounds. GSTs are responsible for the conjugation of the tripeptide glutathione (GSH) to a wide range of electrophilic substrates. These include industrial pollutants, drugs, genotoxic carcinogen metabolites, antibiotics, insecticides and herbicides. In light of applications in biomedicine and biotechnology as cellular detoxification agents, detailed structural and functional studies of GSTs are required. Plant tau class GSTs play crucial catalytic and non-catalytic roles in cellular xenobiotic detoxification process in agronomically important crops. The abundant existence of GSTs in Glycine max and their ability to provide resistance to abiotic and biotic stresses such as herbicide tolerance is of great interest in agriculture because they provide effective and suitable tools for selective weed control. Structural and catalytic studies on tau class GST isoenzymes from Glycine max (GmGSTU10-10, GmGSTU chimeric clone 14 (Sh14), and GmGSTU2-2) were performed. Crystal structures of GmGSTU10-10 in complex with glutathione sulfenic acid (GSOH) and Sh14 in complex with S-(p-nitrobenzyl)-glutathione (Nb-GSH) were determined by molecular replacement at 1.6 Å and 1.75 Å, respectively. Major structural variations that affect substrate recognition and catalytic mechanism were revealed in the upper part of helix H4 and helix H9 of GmGSTU10-10. Structural analysis of Sh14 showed that the Trp114Cys point mutation is responsible for the enhanced catalytic activity of the enzyme. Furthermore, two salt bridges that trigger an allosteric effect between the H-sites were identified at the dimer interface between Glu66 and Lys104. The 3D structure of GmGSTU2-2 was predicted using homology modeling. Structural and phylogenetic analysis suggested GmGSTU2-2 shares residues that are crucial for the catalytic activity of other tau class GSTs–Phe10, Trp11, Ser13, Arg20, Tyr30, Leu37, Lys40, Lys53, Ile54, Glu66 and Ser67. This indicates that the catalytic and ligand binding site in GmGSTU2-2 are well-conserved. Nevertheless, at the ligandin binding site a significant variation was observed. Tyr32 is replaced by Ser32 in GmGSTU2-2 and thismay affect the ligand recognition and binding properties of GmGSTU2-2. Moreover, docking studies revealed important amino acid residues in the hydrophobic binding site that can affect the substrate specificity of the enzyme. Phe10, Pro12, Phe15, Leu37, Phe107, Trp114, Trp163, Phe208, Ile212, and Phe216 could form the hydrophobic ligand binding site and bind fluorodifen. Additionally, side chains of Arg111 and Lys215 could stabilize the binding through hydrogen bonds with the –NO2 groups of fluorodifen. GST gene family from the pathogenic soil bacterium Agrobacterium tumefaciens C58 was characterized and eight GST-like proteins in A. tumefaciens (AtuGSTs) were identified. Phylogenetic analysis revealed that four members of AtuGSTs belong to a previously recognized bacterial beta GST class and one member to theta class. Nevertheless, three AtuGSTs do not belong to any previously known GST classes. The 3D structures of AtuGSTs were predicted using homology modeling. Comparative structural and sequence analysis of the AtuGSTs showed local sequence and structural characteristics between different GST isoenzymes and classes. Interactions at the G-site are conserved, however, significant variations were seen at the active site and the H5b helix at the C-terminal domain. H5b contributes to the formation of the hydrophobic ligand binding site and is responsible for recognition of the electrophilic moiety of the xenobiotic. It is noted that the position of H5b varies among models, thus providing different specificities. Moreover, AtuGSTs appear to form functional dimers through diverse modes. AtuGST1, AtuGST3, AtuGST4 and AtuGST8 use hydrophobic ‘lock–and–key’-like motifs whereas the dimer interface of AtuGST2, AtuGST5, AtuGST6 and AtuGST7 is dominated by polar interactions. These results suggested that AtuGSTs could be involved in a broad range of biological functions including stress tolerance and detoxification of toxic compounds.
Resumo:
The organophosphate temephos has been the main insecticide used against larvae of the dengue and yellow fever mosquito ( Aedes aegypti ) in Brazil since the mid-1980s. Reports of resistance date back to 1995; however, no systematic reports of widespread temephos resistance have occurred to date. As resistance investigation is paramount for strategic decision-making by health officials, our objective here was to investigate the spatial and temporal spread of temephos resistance in Ae. aegypti in Brazil for the last 12 years using discriminating temephos concentrations and the bioassay protocols of the World Health Organization. The mortality results obtained were subjected to spatial analysis for distance interpolation using semi-variance models to generate maps that depict the spread of temephos resistance in Brazil since 1999. The problem has been expanding. Since 2002-2003, approximately half the country has exhibited mosquito populations resistant to temephos. The frequency of temephos resistance and, likely, control failures, which start when the insecticide mortality level drops below 80%, has increased even further since 2004. Few parts of Brazil are able to achieve the target 80% efficacy threshold by 2010/2011, resulting in a significant risk of control failure by temephos in most of the country. The widespread resistance to temephos in Brazilian Ae. aegypti populations greatly compromise effective mosquito control efforts using this insecticide and indicates the urgent need to identify alternative insecticides aided by the preventive elimination of potential mosquito breeding sites.
Resumo:
La presente investigación se planteó reemplazar el uso de insecticidas sintéticos, formulando un champú bioinsecticida de aplicación canina mediante la acción biocida del aceite esencial deAmbrosia arborescens Mill (Altamisa). La planta se recolectó en las laderas del rio Tomebamba, cercanas al Campus Balzay de la Universidad de Cuenca Parroquia San Joaquín. La recolección se realizó durante los meses de Enero a Marzo del 2016. El desarrollo y formulación del producto se realizó en el Laboratorio de Biotecnología, Facultad de Ciencias Químicas de la Universidad de Cuenca. La obtención del aceite esencial de A. arborescens se realizó mediante hidrodestilación por el método Clevenger, con un rendimiento del 0,14%. La actividad biocida se estableció en un ensayo “in vitro” ante el nematodo Panagrellus redivirus, determinándose la dosis letal (DL50) de 250 uL/mL. Debido a la moderada DL50y bajo rendimiento, se planteó como estrategia, determinar el DL50 del extracto orgánico de A. arborescens, el cual se obtuvo mediante una extracción con metanol, consiguiendo un rendimiento del 2 % y DL50de 31,25 uL/mL. De acuerdo estos resultados se procedió a realizar pruebas en pulgas de perros(Ctenocephalides canis) con el extracto de A. arborescens, estableciendo una efectividad del 100 % a la concentración de 46,875 mg/mL en el periodo de tiempo más corto, siendo esta la dosis aplicada para la formulación del champú. El extracto metanólico de A. arborescens presentó elevada actividad biocida, comparado con el aceite esencial. Esta sustancia activa es promisoria en la formulación de bioinsecticidas para mascotas.
Resumo:
Purpose: To evaluate the larvicidal, pupicidal and insecticidal activities of Cosmos bipinnatus , Foeniculum vulgare and Tagetes minuta against Culex quinquefasciatus mosquitoes. Methods: The leaves of the plants were extracted with distilled water, ethanol (95 %), and hexane and the extracts screened for their phytochemical profile. While larvicidal and pupicidal activities were assayed at concentrations ranging from 0.1 - 10 mg/mL, insecticidal property was tested at varying amounts (0.25 - 2 g) of the plant sample. The respective larval mortality was thereafter evaluated using Probit analysis. Results: Saponins, terpenoids, flavonoids and steroids were detected in the plant extracts. The ethanol extracts of F. vulgare, T. minuta and C. bipinnatus exhibited larvicidal activity half-maximal lethal concentration (LC50) of 0.10, 1.17 and 1.18 mg/mL, followed by hexane extracts with LC50 value of 1.03, 1.01 and 1.27 mg/mL, respectively, against the larvae of C. quinquefasciatus mosquito. Hexane extracts displayed pupicidal activity with LC50 of 1.07, 1.12 and 1.16 mg/mL against F. vulgare, T. minuta and C. bipinnatus, respectively, while the ethanol extracts of T. minuta, C. bipinnatus and F. vulgare displayed pupicidal activity at LC50 of 1.11, 1.14 and 1.31 mg/mL respectively, against pupa of C. quinquefasciatus mosquito. The aqueous extracts had no (p > 0.05) lethal effects on both larvae and pupa of C. quinquefasciatus at all evaluated concentrations. F. vulgare had the highest (p < 0.05) half-maximal knock-down effect (KD50 = 7.52 min-1), followed by T. minuta (KD50 = 8.64 min-1) on adult C. quinquefasciatus mosquitoes after 6 h of exposure. F. vulgare and T. minuta killed all evaluated mosquito adults within 12 h with LD99 = 0.25 g/air, while the leaves of C. bipinnatus had no (p > 0.05) knock-down or lethal effects on the adult mosquito. Conclusion: C. bipinnatus, F. vulgare and T. minuta possess larvicidal and pupicidal properties against C. quinquefasciatus, whereas only F. vulgare and T. minuta displayed insecticidal properties. Consequent upon these findings, all the plants can be considered naturally potent larvicidal and pupicidal agents against C. quinquefasciatus.
Resumo:
The aim of this study was to determine the toxicity of the aqueous extract of neem leaves, a product extensively used in fish-farms as alternative for the control of fish parasites and fish fry predators, for the neotropical fish Prochilodus lineatus. The 24 It LC(50) of neem leaf extract for juveniles P lineatus was estimated as 4.8 g L(-1); the fish were then exposed for 24 h to 2.5, 5.0 and 7.5 g L(-1) or only clean water (control). Plasma glucose levels were higher in fish exposed to 2.5 g L(-1) and 5.0 g L(-1) neem extract, relative to control, indicating a typical stress response. Neem extract did not interfere with the osmoregulating capacity of the fish, as their plasma sodium, chloride, total protein and osmolarity did not change. The presence of the biopesticide interfered with the antioxidant defense system of P. lineatus, as there was a decrease in liver catalase activity at all neem concentrations and the detoxifying enzyme glutathione-S-transferase was activated in fish exposed to 5.0 g L(-1). Fish exposed to all neem extract concentrations exhibited damaged gill and kidney tissue. These results indicate that although neem extract is less toxic to P. lineatus than other synthetic insecticides used in fish-farming it does cause functional and morphological changes in this fish species. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The honeydew moth Cryptoblabes gnidiella is the main problem for the wineries in the Northeast of the Brazil, because it attacks the bunch and reduces the quality of the grapes and the wines. In order to stretch out the bunch to facilitate the penetration of the insecticides, it was used gibberellic acid. Six treatments with different concentrations and different dates of application, and the control were compared. The bunches are compact, characteristic of the "Syrah" grapes in the region. The grape berries were analysed at harvest and wines were made by microvinifications. The grape berries showed different qualitative characteristics, as berry weight, number of berries. °Brix, total acidity and heterogeneity of the maturation. The microvinifications were carried out with 50 kg of grapeberries into glass bottles of 20 L at 22°C, for the alcoholic and malolactic fermentations, then stabilized and bottled. The wines were tasted by a panel of ten people and compared on smell and taste plans. The tasting results showed that the control treatment was the best graded wine. The application of gibberellic acid allowed to control the honeydew moth attack, but it caused a heterogeneity on grape maturation, with a lower quality of the grapes and wines compared to the control.
Resumo:
Dengue, amongst the virus illnesses one can get by vectorial transmission, is the one that causes more impact in the morbidity and mortality of world s population. The resistance to the insecticides has caused difficulties to control of vector insect (Aedes aegypti) and has stimulated a search for vegetables with larvicidal activity. The biodiversity of Caatinga is barely known and it is potential of use even less. Some plants of this biome are commercialized in free fairs northeast of Brazil, because of its phytotherapics properties. The vegetables in this study had been selected by means of a questionnaire applied between grass salesmen and natives of the Serido region from Rio Grande do Norte state; culicids eggs had been acquired with traps and placed in container with water for the larva birth. Thirty larvae had been used in each group (a group control and five experimental groups), with four repetitions four times. The vegetables had been submitted to the processes of decoction, infusion and maceration in the standard concentration of 100g of the vegetable of study in 1l of H2O and analyzed after ½, 1, 2, 4, 8, 12, 24 and 48 hours for verification of the average lethal dose (LD50) from the groups with thirty larva. The LD50 was analyzed in different concentrations (50g/l, 100g/l, 150g/l, 200g/l e 300g/l) of Aspidosperma pyrifolium Mart. 48 extracts of rind, leaf and stem of the seven vegetal species: Aspidosperma pyrifolium Mart., Mimosa verrucosa Benth, Mimosa hostilis (Mart.) Benth., Myracrodruon urundeuva Allemão, Ximenia americana L, Bumelia sartorum Mart Zizyphus joazeiro Mart, had been analyzed. The extracts proceeding from the three methods were submitted to the freezedrying, to evaluate and to quantify substances extracted in each process. The results had shown that Aspidosperma pyrifolium Mart. and Myracrodruon urundeuva Allemão are the species that are more distinguished as larvicidal after 24 hours of experiment, in all used processes of extraction in the assays. The Zizyphus joazeiro Mart species has not shown larvicidal activity in none of the assays. In relation to the extraction method, the decoction was the most efficient method in the mortality tax of the A. aegypti larvae
Resumo:
Metarhizium anisopliae is an entomopathogenic fungus relevant in biotechnology with applications like malaria vector control. Studies of its virulence factors are therefore of great interest. Fungal ribotoxins are toxic ribonucleases with extraordinary efficiency against target ribosomes and suggested as potential insecticides. Here, we describe this ribotoxin characteristic activity in M. anisopliae cultures. Anisoplin has been obtained as a recombinant protein and further characterized. It is structurally similar to hirsutellin A, the ribotoxin from the entomopathogen Hirsutella thompsonii. Moreover, anisoplin shows the ribonucleolytic activity typical of ribotoxins and cytotoxicity against insect cells. How Metarhizium uses this toxin and possible applications are on perspective.