836 resultados para influence in mechanical properties


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate changes and their effects on fungal distribution and activity are aspects of concern regarding the human exposure to mycotoxins. An exhaustive search was made for papers available in scientific databases reposrting the influence that climate cchange has on fungi and mycotoxins. Also a review regarding fungal burden, collected between 2010 and 2015 in different settings, was done to support the discussion about future fungi and mycotoxins ocuupational exposure. A. flavus complex, E. graminerarum complex and F. verticilliodes were the most reported to be influenced by climate changes. We noted also that the analyzed Portuguese settings presented already an occupational problem due to their fungal burden. It will be important to know future climate changes to select what complexes/species and strains, and consequently the mycotoxins, we should consider as indicators of an occupational problem. In addition, epidemiologic studies are needed to increase knowledge about potential health effects related with the exposure to both risk factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Professor José Joaquim de Almeida Grácio was a man of many talents. His contribution to the development of physical models to predict the mechanical behaviour of materials for long-term applications in the areas of nanotechnology and forming processes was outstanding and of major international significance. He was a leader not only in his research but also at university administration level. Soon after he received his Ph.D. from the University of Coimbra (Portugal) in 1992, he joined the University of Aveiro with the mission of creating the Department of Mechanical Engineering (DEM). (...)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Little is known about historic wood as it ages naturally. Instead, most studies focus on biological decay, as it is often assumed that wood remains otherwise stable with age. This PhD project was organised by Historic Scotland and the University of Glasgow to investigate the natural chemical and physical aging of wood. The natural aging of wood was a concern for Historic Scotland as traditional timber replacement is the standard form of repair used in wooden cultural heritage; replacing rotten timber with new timber of the same species. The project was set up to look at what differences could exist both chemically and physically between old and new wood, which could put unforeseen stress on the joint between them. Through Historic Scotland it was possible to work with genuine historic wood from two species, Oak and Scots pine, both from the 1500’s, rather than relying on artificial aging. Artificial aging of wood is still a debated topic, with consideration given to whether it is truly mimicking the aging process or just damaging the wood cells. The chemical stability of wood was investigated using Fourier-transform infrared (FTIR) microscopy, as well as wet chemistry methods including a test for soluble sugars from the possible breakdown of the wood polymers. The physical properties assessed included using a tensile testing machine to uncover possible differences in mechanical properties. An environmental chamber was used to test the reaction to moisture of wood of different ages, as moisture is the most damaging aspect of the environment to wooden cultural objects. The project uncovered several differences, both physical and chemical, between the modern and historic wood which could affect the success of traditional ‘like for like’ repairs. Both oak and pine lost acetyl groups, over historic time, from their hemicellulose polymers. This chemical reaction releases acetic acid, which had no effect on the historic oak but was associated with reduced stiffness in historic pine, probably due to degradation of the hemicellulose polymers by acid hydrolysis. The stiffness of historic oak and pine was also reduced by decay. Visible pest decay led to loss of wood density but there was evidence that fungal decay, extending beyond what was visible, degraded the S2 layer of the pine cell walls, reducing the stiffness of the wood by depleting the cellulose microfibrils most aligned with the grain. Fungal decay of polysaccharides in pine wood left behind sugars that attracted increased levels of moisture. The degradation of essential polymers in the wood structure due to age had different impacts on the two species of wood, and raised questions concerning both the mechanism of aging of wood and the ways in which traditional repairs are implemented, especially in Scots pine. These repairs need to be done with more care and precision, especially in choosing new timber to match the old. Within this project a quantitative method of measuring the microfibril angle (MFA) of wood using polarised Fourier transform infrared (FTIR) microscopy has been developed, allowing the MFA of both new and historic pine to be measured. This provides some of the information needed for a more specific match when selecting replacement timbers for historic buildings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This publication constitutes the fruits of National Science Centre research projects (grant no 2011/01/M/HS3/02142 – 6 articles) and the National Programme for the Development of the Humanities (grant no 0108/NPH3/H12/82/2014 – 3 articles). We would like to acknowledge and at the same time express our sincere gratitude for the generosity shown by the following at the Adam Mickiewicz University in making this publication possible: the Dean of the Department of History, Institute of Pre-history and the Eastern Institute.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural characteristics of combustion synthesized, calcined and densified pure and doped nanoceria with tri-valent cations of Er, Y, Gd, Sm and Nd were analyzed by X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). The results showed that the as-synthesized and calcined nanopowders were mesoporous and calculated lattice parameters were close to theoretical ion-packing model. The effect of dopants on elastic modulus, microhardness and fracture toughness of sintered pure and doped ceria were investigated. It was observed that tri-valent cation dopants increased the hardness of the ceria, whereas the fracture toughness and elastic modulus were decreased.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

degli elementi vegetali nella dinamica e nella dispersione degli inquinanti nello street canyon urbano. In particolare, è stato analizzata la risposta fluidodinamica di cespugli con altezze diverse e di alberi con porosità e altezza del tronco varianti. Il modello analizzato consiste in due edifici di altezza e larghezza pari ad H e lunghezza di 10H, tra i quali corre una strada in cui sono stati modellizati una sorgente rappresentativa del traffico veicolare e, ai lati, due linee di componenti vegetali. Le simulazioni sono state fatte con ANSYS Fluent, un software di "Computational Fluid Dynamics"(CFD) che ha permesso di modellizare la dinamica dei flussi e di simulare le concentrazioni emesse dalla sorgente di CO posta lungo la strada. Per la simulazione è stato impiegato un modello RANS a chiusura k-epsilon, che permette di parametrizzare i momenti secondi nell'equazione di Navier Stokes per permettere una loro più facile risoluzione. I risultati sono stati espressi in termini di profili di velocità e concentrazione molare di CO, unitamente al calcolo della exchange velocity per quantificare gli scambi tra lo street canyon e l'esterno. Per quanto riguarda l'influenza dell'altezza dei tronchi è stata riscontrata una tendenza non lineare tra di essi e la exchange velocity. Analizzando invece la altezza dei cespugli è stato visto che all'aumentare della loro altezza esiste una relazione univoca con l'abbassamento della exchange velocity. Infine, andando a variare la permeabilità delle chiome degli alberi è stata trovatta una variazione non monotonica che correla la exchange velocity con il parametro C_2, che è stata interpretata attraverso i diversi andamenti dei profili sopravento e sottovento. In conclusione, allo stadio attuale della ricerca presentata in questa tesi, non è ancora possibile correlare direttamente la exchange velocity con alcun parametro analizzato.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanical behaviour and performance of a ductile iron component is highly dependent on the local variations in solidification conditions during the casting process. Here we show a framework which combine a previously developed closed chain of simulations for cast components with a micro-scale Finite Element Method (FEM) simulation of the behaviour and performance of the microstructure. A casting process simulation, including modelling of solidification and mechanical material characterization, provides the basis for a macro-scale FEM analysis of the component. A critical region is identified to which the micro-scale FEM simulation of a representative microstructure, generated using X-ray tomography, is applied. The mechanical behaviour of the different microstructural phases are determined using a surrogate model based optimisation routine and experimental data. It is discussed that the approach enables a link between solidification- and microstructure-models and simulations of as well component as microstructural behaviour, and can contribute with new understanding regarding the behaviour and performance of different microstructural phases and morphologies in industrial ductile iron components in service.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to design and process-related factors, there are local variations in the microstructure and mechanical behaviour of cast components. This work establishes a Digital Image Correlation (DIC) based method for characterisation and investigation of the effects of such local variations on the behaviour of a high pressure, die cast (HPDC) aluminium alloy. Plastic behaviour is studied using gradient solidified samples and characterisation models for the parameters of the Hollomon equation are developed, based on microstructural refinement. Samples with controlled microstructural variations are produced and the observed DIC strain field is compared with Finite Element Method (FEM) simulation results. The results show that the DIC based method can be applied to characterise local mechanical behaviour with high accuracy. The microstructural variations are observed to cause a redistribution of strain during tensile loading. This redistribution of strain can be predicted in the FEM simulation by incorporating local mechanical behaviour using the developed characterization model. A homogeneous FEM simulation is unable to predict the observed behaviour. The results motivate the application of a previously proposed simulation strategy, which is able to predict and incorporate local variations in mechanical behaviour into FEM simulations already in the design process for cast components.