697 resultados para impurities


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Continuous measurements of ice crystal size have been carried out on an 80 m sequence between 2790 and 2870 m depth in the GRIP ice core from Central Greenland. The ice in this interval is at present considered to orginate from the Eemian interglacial period. The record reveals that the crystal size in ice older than 100,000 yr is highly dependent on climatic conditions at the time of snowfall. This dependence shows up as a strong correlation between ?18O values and crystal size throughout the Eemian, as well as a negative correlation between crystal size and several soluble and insoluble impurities. Although high-resolution impurity records are available from selected parts of the Eemian ice, the study is not conclusive on which impurities are most effective in slowing grain growth. It is shown that the normal grain-growth process, commonly observed in the upper few hundred metres of polar ice sheets, does not yield grain sizes compatible with observed ones at this depth in the ice sheet, even in those parts of the Eemian ice where impurity drag effects are not present. Polygonization of crystals within the ice sheet and the nucleation and rapid growth of new grains at relatively high temperatures in the lowest part probably play an important role in producing the observed grain-size variations. The relevance of possible flow disturbances of the GRIP Eemian climatic record for the results presented is discussed briefly.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thermal diffusion enrichment apparatus in use in Amsterdam before 1967, has been rebuilt in the Groningen Radiocarbon Dating Laboratory. It has been shown to operate reliably and reproducibly. A reasonable agreement exists between the theoretical calculations and the experimental results. The 14C enrichment of a CO sample is deduced from the simultaneous mass 30 enrichment, which is measured with a mass spectrometer. The relation between both enrichments follows from a series of calibration measurements. The over-all accuracy in the enrichment is a few percent, equivalent to a few hundred years in age. The main problem in dating very old samples is their possible contamination with recent carbon. Generally, careful sample selection and rigorous pretreatment reduce sample contamination to an acceptable value. Also, it has been established that laboratory contamination, due to a memory effect in the combustion system and to impurities in the oxygen and nitrogen gas used for combustion, can be eliminated. A detailed analysis shows that the counter background in our set-up is almost exclusively caused by cosmic ray muons. The measurement of 28 early glacial samples, mostly from North-west Europe, has yielded a consistent set of ages. These indicate the existence of three early glacial interstadials; using the Weichselian definitions: Amersfoort starting at 68 200 ± 1100, Brørup at 64 400 ± 800 and Odderade at 60 500 ± 600 years BP. This 14C chronology shows good agreement with the Camp Century chronology and the dated palaeo sea levels. The discrepancy in the age of the early part of the Last Glacial on the 14C time scale and on that adopted for the deep-sea d18 record, must probably be attributed to the use of a generalized d18 curve and a wrong interpretation of this curve in terms of three Barbados terraces.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The obtaining of multiferroicBiFeO3 as a pure single-phase product is particularly complex since the formation of secondary phases seems to be unavoidable. The process by which these secondary impurities are formed is studied by analyzing the diffusion and solidstate reactivity of the Bi2O3–Fe2O3 system. Experimental evidence is reported which indicates that the progressive diffusion of Bi3+ ions into the Fe2O3 particles governs the solidstatesynthesis of the perovskite BiFeO3 phase. However a competition is established between the diffusion process which tends to complete the formation of BiFeO3, and the crystallization of stable Bi2Fe4O9 mullite crystals, which tend to block that formation reaction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dissolution and gettering of iron is studied during the final fabrication step of multicrystalline silicon solar cells, the co-firing step, through simulations and experiments. The post-processed interstitial iron concentration is simulated according to the as-grown concentration and distribution of iron within a silicon wafer, both in the presence and absence of the phosphorus emitter, and applying different time-temperature profiles for the firing step. The competing effects of dissolution and gettering during the short annealing process are found to be strongly dependant on the as-grown material quality. Furthermore, increasing the temperature of the firing process leads to a higher dissolution of iron, hardly compensated by the higher diffusivity of impurities. A new defect engineering tool is introduced, the extended co-firing, which could allow an enhanced gettering effect within a small additional time

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La propulsión eléctrica constituye hoy una tecnología muy competitiva y de gran proyección de futuro. Dentro de los diversos motores de plasma existentes, el motor de efecto Hall ha adquirido una gran madurez y constituye un medio de propulsión idóneo para un rango amplio de misiones. En la presente Tesis se estudian los motores Hall con geometría convencional y paredes dieléctricas. La compleja interacción entre los múltiples fenómenos físicos presentes hace que sea difícil la simulación del plasma en estos motores. Los modelos híbridos son los que representan un mejor compromiso entre precisión y tiempo de cálculo. Se basan en utilizar un modelo fluido para los electrones y algoritmos de dinámica de partículas PIC (Particle-In- Cell) para los iones y los neutros. Permiten hacer uso de la hipótesis de cuasineutralidad del plasma, a cambio de resolver separadamente las capas límite (o vainas) que se forman en torno a las paredes de la cámara. Partiendo de un código híbrido existente, llamado HPHall-2, el objetivo de la Tesis doctoral ha sido el desarrollo de un código híbrido avanzado que mejorara la simulación de la descarga de plasma en un motor de efecto Hall. Las actualizaciones y mejoras realizadas en las diferentes partes que componen el código comprenden tanto aspectos teóricos como numéricos. Fruto de la extensa revisión de la algoritmia del código HPHall-2 se han conseguido reducir los errores de precisión un orden de magnitud, y se ha incrementado notablemente su consistencia y robustez, permitiendo la simulación del motor en un amplio rango de condiciones. Algunos aspectos relevantes a destacar en el subcódigo de partículas son: la implementación de un nuevo algoritmo de pesado que permite determinar de forma más precisa el flujo de las magnitudes del plasma; la implementación de un nuevo algoritmo de control de población, que permite tener suficiente número de partículas cerca de las paredes de la cámara, donde los gradientes son mayores y las condiciones de cálculo son más críticas; las mejoras en los balances de masa y energía; y un mejor cálculo del campo eléctrico en una malla no uniforme. Merece especial atención el cumplimiento de la condición de Bohm en el borde de vaina, que en los códigos híbridos representa una condición de contorno necesaria para obtener una solución consistente con el modelo de interacción plasma-pared, y que en HPHall-2 aún no se había resuelto satisfactoriamente. En esta Tesis se ha implementado el criterio cinético de Bohm para una población de iones con diferentes cargas eléctricas y una gran dispersión de velocidades. En el código, el cumplimiento de la condición cinética de Bohm se consigue por medio de un algoritmo que introduce una fina capa de aceleración nocolisional adyacente a la vaina y mide adecuadamente el flujo de partículas en el espacio y en el tiempo. Las mejoras realizadas en el subcódigo de electrones incrementan la capacidad de simulación del código, especialmente en la región aguas abajo del motor, donde se simula la neutralización del chorro del plasma por medio de un modelo de cátodo volumétrico. Sin abordar el estudio detallado de la turbulencia del plasma, se implementan modelos sencillos de ajuste de la difusión anómala de Bohm, que permiten reproducir los valores experimentales del potencial y la temperatura del plasma, así como la corriente de descarga del motor. En cuanto a los aspectos teóricos, se hace especial énfasis en la interacción plasma-pared y en la dinámica de los electrones secundarios libres en el interior del plasma, cuestiones que representan hoy en día problemas abiertos en la simulación de los motores Hall. Los nuevos modelos desarrollados buscan una imagen más fiel a la realidad. Así, se implementa el modelo de vaina de termalización parcial, que considera una función de distribución no-Maxwelliana para los electrones primarios y contabiliza unas pérdidas energéticas más cercanas a la realidad. Respecto a los electrones secundarios, se realiza un estudio cinético simplificado para evaluar su grado de confinamiento en el plasma, y mediante un modelo fluido en el límite no-colisional, se determinan las densidades y energías de los electrones secundarios libres, así como su posible efecto en la ionización. El resultado obtenido muestra que los electrones secundarios se pierden en las paredes rápidamente, por lo que su efecto en el plasma es despreciable, no así en las vainas, donde determinan el salto de potencial. Por último, el trabajo teórico y de simulación numérica se complementa con el trabajo experimental realizado en el Pnnceton Plasma Physics Laboratory, en el que se analiza el interesante transitorio inicial que experimenta el motor en el proceso de arranque. Del estudio se extrae que la presencia de gases residuales adheridos a las paredes juegan un papel relevante, y se recomienda, en general, la purga completa del motor antes del modo normal de operación. El resultado final de la investigación muestra que el código híbrido desarrollado representa una buena herramienta de simulación de un motor Hall. Reproduce adecuadamente la física del motor, proporcionando resultados similares a los experimentales, y demuestra ser un buen laboratorio numérico para estudiar el plasma en el interior del motor. Abstract Electric propulsion is today a very competitive technology and has a great projection into the future. Among the various existing plasma thrusters, the Hall effect thruster has acquired a considerable maturity and constitutes an ideal means of propulsion for a wide range of missions. In the present Thesis only Hall thrusters with conventional geometry and dielectric walls are studied. The complex interaction between multiple physical phenomena makes difficult the plasma simulation in these engines. Hybrid models are those representing a better compromise between precision and computational cost. They use a fluid model for electrons and Particle-In-Cell (PIC) algorithms for ions and neutrals. The hypothesis of plasma quasineutrality is invoked, which requires to solve separately the sheaths formed around the chamber walls. On the basis of an existing hybrid code, called HPHall-2, the aim of this doctoral Thesis is to develop an advanced hybrid code that better simulates the plasma discharge in a Hall effect thruster. Updates and improvements of the code include both theoretical and numerical issues. The extensive revision of the algorithms has succeeded in reducing the accuracy errors in one order of magnitude, and the consistency and robustness of the code have been notably increased, allowing the simulation of the thruster in a wide range of conditions. The most relevant achievements related to the particle subcode are: the implementation of a new weighing algorithm that determines more accurately the plasma flux magnitudes; the implementation of a new algorithm to control the particle population, assuring enough number of particles near the chamber walls, where there are strong gradients and the conditions to perform good computations are more critical; improvements in the mass and energy balances; and a new algorithm to compute the electric field in a non-uniform mesh. It deserves special attention the fulfilment of the Bohm condition at the edge of the sheath, which represents a boundary condition necessary to match consistently the hybrid code solution with the plasma-wall interaction, and remained as a question unsatisfactory solved in the HPHall-2 code. In this Thesis, the kinetic Bohm criterion has been implemented for an ion particle population with different electric charges and a large dispersion in their velocities. In the code, the fulfilment of the kinetic Bohm condition is accomplished by an algorithm that introduces a thin non-collisional layer next to the sheaths, producing the ion acceleration, and measures properly the flux of particles in time and space. The improvements made in the electron subcode increase the code simulation capabilities, specially in the region downstream of the thruster, where the neutralization of the plasma jet is simulated using a volumetric cathode model. Without addressing the detailed study of the plasma turbulence, simple models for a parametric adjustment of the anomalous Bohm difussion are implemented in the code. They allow to reproduce the experimental values of the plasma potential and the electron temperature, as well as the discharge current of the thruster. Regarding the theoretical issues, special emphasis has been made in the plasma-wall interaction of the thruster and in the dynamics of free secondary electrons within the plasma, questions that still remain unsolved in the simulation of Hall thrusters. The new developed models look for results closer to reality, such as the partial thermalization sheath model, that assumes a non-Maxwellian distribution functions for primary electrons, and better computes the energy losses at the walls. The evaluation of secondary electrons confinement within the chamber is addressed by a simplified kinetic study; and using a collisionless fluid model, the densities and energies of free secondary electrons are computed, as well as their effect on the plasma ionization. Simulations show that secondary electrons are quickly lost at walls, with a negligible effect in the bulk of the plasma, but they determine the potential fall at sheaths. Finally, numerical simulation and theoretical work is complemented by the experimental work carried out at the Princeton Plasma Physics Laboratory, devoted to analyze the interesting transitional regime experienced by the thruster in the startup process. It is concluded that the gas impurities adhered to the thruster walls play a relevant role in the transitional regime and, as a general recomendation, a complete purge of the thruster before starting its normal mode of operation it is suggested. The final result of the research conducted in this Thesis shows that the developed code represents a good tool for the simulation of Hall thrusters. The code reproduces properly the physics of the thruster, with results similar to the experimental ones, and represents a good numerical laboratory to study the plasma inside the thruster.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The extraction of metal impurities during phosphorus diffusion gettering (PDG) is one of the crucial process steps when fabricating high-efficiency solar cells using low-cost, lower-purity silicon wafers. In this work, we show that for a given metal concentration, the size and density of metal silicide precipitates strongly influences the gettering efficacy. Different precipitate size distributions can be already found in silicon wafers grown by different techniques. In our experiment, however, the as-grown distribution of precipitated metals in multicrystalline Si sister wafers is engineered through different annealing treatments in order to control for the concentration and distribution of other defects. A high density of small precipitates is formed during a homogenization step, and a lower density of larger precipitates is formed during extended annealing at 740º C. After PDG, homogenized samples show a decreased interstitial iron concentration compared to as-grown and ripened samples, in agreement with simulations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have analyzed by means of Rutherford backscattering spectrometry (RBS) the Ti lattice location and the degree of crystalline lattice recovery in heavily Ti implanted silicon layers subsequently pulsed laser melted (PLM). Theoretical studies have predicted that Ti should occupy interstitial sites in silicon for a metallic-intermediate band (IB) formation. The analysis of Ti lattice location after PLM processes is a crucial point to evaluate the IB formation that can be clarifyied by means of RBS measurements. After PLM, time-of-flight secondary ion mass spectrometry measurements show that the Ti concentration in the layers is well above the theoretical limit for IB formation. RBS measurements have shown a significant improvement of the lattice quality at the highest PLM energy density studied. The RBS channeling spectra reveals clearly that after PLM processes Ti impurities are mostly occupying interstitial lattice sites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electronic structure of modified chalcopyrite CuInS2 has been analyzed from first principles within the density functional theory. The host chalcopyrite has been modified by introducing atomic impurities M at substitutional sites in the lattice host with M = C, Si, Ge, Sn, Ti, V, Cr, Fe, Co, Ni, Rh, and Ir. Both substitutions M for In and M for Cu have been analyzed. The gap and ionization energies are obtained as a function of the M-S displacements. It is interesting for both spintronic and optoelectronic applications because it can provide significant information with respect to the pressure effect and the nonradiative recombination.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The possibility of using more economical silicon feedstock, i.e. as support for epitaxial solar cells, is of interest when the cost reduction and the properties are attractive. We have investigated the mechanical behaviour of two blocks of upgraded metallurgical silicon, which is known to present high content of impurities even after being purified by the directional solidification process. These impurities are mainly metals like Al and silicon compounds. Thus, it is important to characterize their effect in order to improve cell performance and to ensure the survival of the wafers throughout the solar value chain. Microstructure and mechanical properties were studied by means of ring on ring and three point bending tests. Additionally, elastic modulus and fracture toughness were measured. These results showed that it is possible to obtain marked improvements in toughness when impurities act as microscopic internal crack arrestors. However, the same impurities can be initiators of damage due to residual thermal stresses introduced during the crystallization process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The obtaining of multiferroic BiFeO3 as a pure single-phase product is particularly complex since the formation of secondary phases seems to be unavoidable. The process by which these secondary impurities are formed is studied by analyzing the diffusion and solid state reactivity of the Bi2O3?Fe2O3 system. Experimental evidence is reported which indicates that the progressive diffusion of Bi3+ ions into the Fe2O3 particles governs the solid state synthesis of the perovskite BiFeO3 phase. However a competition is established between the diffusion process which tends to complete the formation of BiFeO3, and the crystallization of stable Bi2Fe4O9 mullite crystals, which tend to block that formation reaction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The possibility of using more economical silicon feedstock, i.e. as support for epitaxial solar cells, is of interest when the cost reduction and the properties are attractive. We have investigated the mechanical behavior of two blocks of upgraded metallurgical silicon, which is known to present high content of impurities even after being purified by the directional solidification process. The impurities are mainly metals like Al and silicon compounds. Thus, it is important to characterize their effect in order to improve cell performance and to ensure the survival of the wafers throughout the solar value chain. Microstructure and mechanical properties were studied by means of ring on ring and three point bending tests. Additionally, Young’s modulus, hardness and fracture toughness were measured. These results showed that it is possible to obtain marked improvements in toughness when impurities act as microscopic internal crack arrestors. However, the same impurities can be initiators of damage due to residual thermal stresses introduced during the crystallization process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To optimize the last high temperature step of a standard solar cell fabrication process (the contact cofiring step), the aluminium gettering is incorporated in the Impurity-to-Efficiency simulation tool, so that it models the phosphorus and aluminium co-gettering effect on iron impurities. The impact of iron on the cell efficiency will depend on the balance between precipitate dissolution and gettering. Gettering efficiency is similar in a wide range of peak temperatures (600-850 ºC), so that this peak temperature can be optimized favoring other parameters (e.g. ohmic contact). An industrial co-firing step can enhance the co-gettering effect by adding a temperature plateau after the peak of temperature. For highly contaminated materials, a short plateau (menor que 2 min) at low temperature (600 ºC) is shown to reduce the dissolved iron.