990 resultados para immune tolerance
Resumo:
Protection against Fasciola hepatica in goats immunized with a synthetic recombinant antigen from Schistosoma mansoni fatty acid-binding protein 14 (rSm14) was investigated by assessing worm burdens, serum levels of hepatic enzymes, faecal egg count and hepatic damage, which was evaluated using gross and microscopic morphometric observation. The nature of the local immune response was assessed by examining the distribution of CD2+, CD4+, CD8+ and γ´+ T lymphocytes along with IgG+, IL-4+ and IFN-γ+ cells in the liver and hepatic lymph nodes (HLN). The goats used consisted of group 1 (unimmunized and uninfected), group 2 [infected control - immunized with Quillaia A (Quil A)] and group 3 (immunized with rSm14 in Quil A and infected), each containing seven animals. Immunization with rSm14 in Quil A adjuvant induced a reduction in gross hepatic lesions of 56.6% (p < 0.001) and reduced hepatic and HLN infiltration of CD2+, CD4+, CD8+ and γ´+ T lymphocytes as well as IL-4+ and IFN-γ+ cells (p < 0.05). This is the first report of caprine immunization against F. hepatica using a complete rSm14 molecule derived from S. mansoni. Immunization reduced hepatic damage and local inflammatory infiltration into the liver and HLN. However, considering that Quil A is not the preferential/first choice adjuvant for Sm14 immunization, further studies will be undertaken using the monophosphoryl lipid A-based family of adjuvants during clinical trials to facilitate anti-Fasciolavaccine development.
Resumo:
BACKGROUND
Recent advances in characterizing the immune recovery of HIV-1-infected people have highlighted the importance of the thymus for peripheral T-cell diversity and function. The aim of this study was to investigate differences in immune reconstitution profiles after highly active antiretroviral therapy (HAART) between HIV-children and adults.
METHODS
HIV patients were grouped according to their previous clinical and immunological status: 9 HIV-Reconstituting-adults (HIV-Rec-adults) and 10 HIV-Reconstituting-children (HIV-Rec-children) on HAART with viral load (VL)
Resumo:
La thrombocytopénie immune primaire (ITP) est une affection auto-immune acquise avec diminution de la survie des plaquettes et perturbation de la production plaquettaire. Il n'existe aucun test clinique simple permettant de prouver la nature auto-immune de l'affection. Pour cette raison, il s'agit presque toujours d'un diagnostic par exclusion d'autres causes. Bien que les plaquettes soient souvent inférieures à 10 x 109/l lors de la présentation initiale, la tendance hémorragique est étonnamment modérée chez la majorité des patients. Le traitement initial fait toujours appel aux corticostéroïdes, combinés à des immunoglobulines intraveineuses et à des transfusions de plaquettes dans les formes compliquées avec hémorragies significatives. Chez l'enfant, la maladie est souvent induite par des infections virales et son évolution est bénigne et spontanément régressive dans la majorité des cas. Chez l'adulte, la maladie est plus souvent persistante ou chroniquement récidivante, et le taux de plaquettes se situe souvent à un taux suffisant pour prévenir des hémorragies spontanées. Seule une faible proportion de patients souffre d'une thrombocytopénie sévère prolongée accompagnée de saignements réguliers avec risque d'hémorragies potentiellement fatales. C'est probablement ce groupe de patients restreint qui tirera surtout profit des nouvelles options thérapeutiques telles que les agonistes du récepteur de la thrombopoïétine. A la lumière de ces nouvelles possibilités, un groupe d'hématologues suisses s'est réuni pour élaborer des directives concernant la prise en charge de l'ITP conformément aux besoins et aux habitudes de notre pays.
Resumo:
Protein-energy malnutrition and micronutrient deficiencies may down-regulate immune response and increase morbidity and mortality due to infection. In this study, a murine model was used to study the effects of protein, iron and zinc deficiencies on the immune response to Leishmania (Leishmania) chagasi infection. Mice were initially fed a standard diet or with a diet containing 3% casein but deficient in zinc and iron. After malnutrition was established, mice were inoculated with L. chagasiand sacrificed four weeks later in order to evaluate liver and spleen parasite loads and serum biochemical parameters. Significant decreases in liver and spleen weight, an increase in the parasite loads in these organs and decreases in serum protein and glucose concentrations in malnourished animals were observed. Furthermore, the production of interferon-gamma by spleen cells from infected malnourished mice stimulated by Leishmaniaantigen was significantly lower compared with that in control diet mice. These data suggest that malnutrition alters the immune response to L. chagasiinfection in the BALB/c model and, in association with the effects on biochemical and anatomical parameters of the host, favored increases in the parasite loads in the spleens and livers of these animals.
Resumo:
Leishmania amazonensis causes different diseases depending on the host and parasitic virulence factors. In this study, CBA mice were infected with L. amazonensis isolates from patients with localized (Ba125), diffuse cutaneous (Ba276) or visceral leishmaniasis (Ba109). Mice infected with Ba125 and Ba276 progressed rapidly and lesions displayed an infiltrate rich in parasitized macrophages and were necrotic and ulcerated. Ba109 induced smaller lesions and a mixed inflammatory infiltrate without necrosis or ulceration. Ba109 induced an insidious disease with lower parasite load in CBA mice, similar to human disease. Levels of IFN-γ, IL-4 and IL-10 did not differ among the groups. Because all groups were unable to control the infection, expression of IL-4 associated with low production of IFN-γ in the early phase of infection may account for susceptibility, but others factors may contribute to the differences observed in inflammatory responses and infection progression. Evaluation of some parasitic virulence factors revealed that Ba276 exhibits higher ecto-ADPase and 5'-nucleotidase activities compared to the Ba109 and Ba125 strains. Both Ba276 and Ba125 had higher arginase activity in comparison to Ba109. Finally, these data suggest that the differences in enzyme activities among parasites can account for differences in host inflammatory responses and infection progression.
Resumo:
Domestic dogs are considered to be the main reservoirs of zoonotic visceral leishmaniasis. In this work, we evaluated a protocol to induce Leishmania infantum/Leishmania chagasi-specific cellular and humoral immune responses in dogs, which consisted of two injections of Leishmania promastigote lysate followed by a subcutaneous inoculation of viable promastigotes. The primary objective was to establish a canine experimental model to provide positive controls for testing immune responses to Leishmania in laboratory conditions. After inoculation of viable promastigotes, specific proliferative responses of peripheral blood mononuclear cells (PBMCs) to either Leishmania lysate or recombinant proteins, the in vitro production of interferon-γ by antigen-stimulated PBMCs and a significant increase in circulating levels of anti-Leishmania antibodies were observed. The immunized dogs also displayed positive delayed-type hypersensitivity reactions to Leishmania crude antigens and to purified recombinant proteins. An important finding that supports the suitability of the dogs as positive controls is that they remained healthy for the entire observation period, i.e., more than seven years after infection. Following the Leishmania antigen lysate injections, the infection of dogs by the subcutaneous route appears to induce a sustained cellular immune response, leading to an asymptomatic infection. This provides a useful model for both the selection of immunogenic Leishmania antigens and for immunobiological studies on their possible immunoprotective activities.
Resumo:
Hodgkin's lymphoma represents one of the most frequent lymphoproliferative syndromes, especially in young population. Although HL is considered one of the most curable tumors, a sizeable fraction of patients recur after successful upfront treatment or, less commonly, are primarily resistant. This work tries to summarize the data on clinical, histological, pathological, and biological factors in HL, with special emphasis on the improvement of prognosis and their impact on therapeutical strategies. The recent advances in our understanding of HL biology and immunology show that infiltrated immune cells and cytokines in the tumoral microenvironment may play different functions that seem tightly related with clinical outcomes. Strategies aimed at interfering with the crosstalk between tumoral Reed-Sternberg cells and their cellular partners have been taken into account in the development of new immunotherapies that target different cell components of HL microenvironment. This new knowledge will probably translate into a change in the antineoplastic treatments in HL in the next future and hopefully will increase the curability rates of this disease.
Resumo:
The propensity of helminths, such as schistosomes, to immunomodulate the host's immune system is an essential aspect of their survival. Previous research has demonstrated how soluble schistosomal egg antigens (SEA) dampen TLR-signaling during innate immune responses. We show here that the suppressive effect by SEA on TLR signaling is simultaneously coupled to the activation of the Nlrp3 (NLR family, pyrin domain containing 3) inflammasome and thus IL-1β production. Therefore, the responsible protein component of SEA contains the second signal that is required to trigger proteolytic pro-IL-1β processing. Moreover, the SEA component binds to the Dectin-2/FcRγ (Fc receptor γ chain) complex and activates the Syk kinase signaling pathway to induce reactive oxygen species and potassium efflux. As IL-1β has been shown to be an essential orchestrator against several pathogens we studied the in vivo consequences of Schistosoma mansoni infection in mice deficient in the central inflammasome adapter ASC and Nlrp3 molecule. These mice failed to induce local IL-1β levels in the liver and showed decreased immunopathology. Interestingly, antigen-specific Th1, Th2, and Th17 responses were down-regulated. Overall, these data imply that component(s) within SEA induce IL-1β production and unravel a crucial role of Nlrp3 during S. mansoni infection.
Resumo:
Assays that measure a patient's immune response play an increasingly important role in the development of immunotherapies. The inherent complexity of these assays and independent protocol development between laboratories result in high data variability and poor reproducibility. Quality control through harmonization--based on integration of laboratory-specific protocols with standard operating procedures and assay performance benchmarks--is one way to overcome these limitations. Harmonization guidelines can be widely implemented to address assay performance variables. This process enables objective interpretation and comparison of data across clinical trial sites and also facilitates the identification of relevant immune biomarkers, guiding the development of new therapies.
Resumo:
Purpose/Objective: Protective CD8+ T cell responses rely on TCRdependent recognition of immunogenic peptides presented by MHC I. Cytolytic T lymphocytes directed against self/tumor antigens express TCRs of lower affinity/avidity than pathogen-derived T lymphocytes and elicit less protective immune responses due to mechanisms of central and peripheral tolerance. Anti-tumor T cell reactivity can be improved by increasing the TCR-pMHC affinity within physiological limits, while intriguingly further increase in the supraphysiological range (KD < 1 lM) leads to drastic functional declines. We aim at identifying the molecular mechanisms underlying the loss of T cell responsiveness associated with supraphysiological TCRpMHC affinities in order to improve effectiveness of TCR-engineered T cells used in adoptive cell transfer (ACT) cancer immunotherapy. Materials and methods: Using a panel of human CD8+ T cells engineered with TCRs of incremental affinity for the HLA-A2-resticted tumor cancer testis antigen NY-ESO-1, we performed comparative gene expression microarray and TCR-mediated signaling analysis together with membrane receptors level analysis. Results: As compared to cells expressing TCR affinities generating optimal function (KD from 5to 1 lM), those with supraphysiological affinity (KD from 1 lM to 15 nM) had an overall reduced expression of genes implied in signaling, cell activation and proliferation, and showed impaired proximal and distal TCR signaling capacity. This correlated with a decline in surface expression of CD8b, CD28 and activatory TNFR superfamily members. Importantly, expression of inhibitory receptor PD-1 and SHP-1 phosphatase was upregulated in a TCR affinity-dependent manner. Consequently, PD-L1 and SHP-1 blockade restored the function of T cells with high TCRs affinity. Moreover, SHP-1 inhibition also augmented functional efficacy of T cells with TCRs of optimal affinity. Conclusions: Our findings indicate that TCR affinity-associated regulatory mechanisms control T cells responsiveness at various levels to limit potential auto-reactive cytotoxic effects. They also support the development of ACT therapies combined with blockade of inhibitory molecules such as SHP-1 to enhance effectiveness of T cell immunotherapy.
Resumo:
Cancer immunosurveillance theory has emphasized the role of escape mechanisms in tumor growth. In this respect, a very important factor is the molecular characterization of the mechanisms by which tumor cells evade immune recognition and destruction. Among the many escape mechanisms identified, alterations in classical and non-classical HLA (Human Leucocyte Antigens) class I and class II expression by tumor cells are of particular interest. In addition to the importance of HLA molecules, tumor-associated antigens and accessory/co-stimulatory molecules are also involved in immune recognition. The loss of HLA class I antigen expression and of co-stimulatory molecules can occur at genetic, transcriptional and post-transcriptional levels. Epigenetic defects are involved in at least some mechanisms that preclude mounting a successful host-antitumor response involving the HLA system, tumor-associated antigens, and accessory/co-stimulatory molecules. This review summarizes our current understanding of the role of methylation in the regulation of molecules involved in the tumor immune response.
Resumo:
A high prevalence of occult hepatitis B (OHB) genotype H infections has been observed in the native Mexican Nahua population. In addition, a low incidence of hepatitis B virus (HBV)-associated hepatocellular carcinoma has been described in Mexico. The immune response to infection among OHB-infected patients has been poorly evaluated in vivo. Therefore, we assessed the expression profiles of 23 cytokines in OHB genotype H-infected Nahua patients. A total of 41 sera samples from natives of the Nahua community were retrospectively analysed. Based on their HBV antibody profiles, patients were stratified into two groups: OHB patients (n = 21) and patients that had recovered from HBV infection (n = 20). Herein, we report distinctive cytokines profiles in OHB-infected individuals. Compared to healthy controls (n = 20) and patients who resolved HBV infection, OHB-infected patients displayed an increase in interleukin (IL)-2 secretion in addition to a characteristic inflammation profile (decrease in IL-8 and tumour necrosis factor-alpha levels and increased levels of tumour growth factor-beta). IL-15 and interferon-gamma levels were reduced in OHB-infected individuals when compared to those patients who resolved HBV infection. In contrast, OHB patients showed an increase in monocyte chemoattractant protein (MCP)-1 and MCP-2 compared to healthy controls and patients who resolved HBV infection. These findings suggest that cytokine expression can influence the severity of OHB disease and could lead to new investigation into the treatment of liver and other infectious diseases.
Resumo:
At mucosal surfaces, secretory IgA (SIgA) antibodies serve as the first line of defense against microorganisms through a mechanism called immune exclusion that prevents interaction of neutralized antigens with the epithelium. In addition, SIgA plays a role in the immune balance of the epithelial barrier through selective adhesion to M cells in intestinal Peyer's patches. This mediates the transepithelial retro-transport of the antibody and associated antigens from the intestinal lumen to underlying gut-associated organized lymphoid tissue. In Peyer's patches, SIgA-based immune complexes are internalized by underlying antigen-presenting cells, leaving the antigen with masked epitopes, a form that limits the risk of overwhelming the local immune protection system with danger signals. This translates into the onset of mucosal and systemic responses associated with production of anti-inflammatory cytokines and limited activation of antigen-presenting cells. In the gastrointestinal tract, SIgA exhibits thus properties of a neutralizing agent (immune exclusion) and of an immunopotentiator inducing effector immune responses in a noninflammatory context favorable to preserve local homeostasis.
Resumo:
Multiple sclerosis (MS) is an inflammatory and demyelinating disease of the central nervous system (CNS). Myelin oligodendrocyte glycoprotein (MOG) and myelin oligodendrocyte basic protein (MOBP) were both shown to be highly encephalitogenic in animal models of MS. In contrast, the association of MOG- and MOBP-specific humoral or cellular immune responses and MS in humans is far less established. In this study, we sought to analyse MOG- and MOBP-specific T-cell responses in a large cohort of patients with various stages of the disease. Patients with other neurological diseases and healthy subjects were enrolled to serve as control study subjects. We determined the proliferation and the secretion of IFN-γ secretion in our cohort. We found that MOG-specific T-cell responses were higher and more frequent as compared to MOBP-specific ones. However, both MS patients and control study subjects had similar myelin-specific T-cell responses at the periphery, thus calling for more precise studies at CNS level.
Resumo:
Via a transcription factor, Foxp3, immunoregulatory CD4(+)CD25(+) T cells (T reg cells) play an important role in suppressing the function of other T cells. Adoptively transferring high numbers of T reg cells can reduce the intensity of the immune response, thereby providing an attractive prospect for inducing tolerance. Extending our previous findings, we describe an in vivo approach for inducing rapid expansion of T reg cells by injecting mice with interleukin (IL)-2 mixed with a particular IL-2 monoclonal antibody (mAb). Injection of these IL-2-IL-2 mAb complexes for a short period of 3 d induces a marked (>10-fold) increase in T reg cell numbers in many organs, including the liver and gut as well as the spleen and lymph nodes, and a modest increase in the thymus. The expanded T reg cells survive for 1-2 wk and are highly activated and display superior suppressive function. Pretreating with the IL-2-IL-2 mAb complexes renders the mice resistant to induction of experimental autoimmune encephalomyelitis; combined with rapamycin, the complexes can also be used to treat ongoing disease. In addition, pretreating mice with the complexes induces tolerance to fully major histocompatibility complex-incompatible pancreatic islets in the absence of immunosuppression. Tolerance is robust and the majority of grafts are accepted indefinitely. The approach described for T reg cell expansion has clinical potential for treating autoimmune disease and promoting organ transplantation.