1000 resultados para hydrocyanic acid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The novel alkyllithium 1b is not only intriguingly stable towards fragmentation, but also a synthetically useful reagent, complementing current carboxylic ester enolate methodology. Its design is based on interesting mechanistic principles, and harnesses the known stability of the 2,4,10-trioxaadamantane framework.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The conformation of amino acid side chains as observed in well-determined structures of globular proteins has earlier been extensively investigated. In contrast, the structural features of the polypeptide backbone that result from the occurrence of specific amino acids along the polypeptide have not been analysed. In this article, we present the statistically significant features in the backbone geometry that appear to be a consequence of the occurrence of rotamers of different amino acid side chains by analysing 102 well-refined structures that form a random collection of proteins. It is found that the persistence of helical segments around each residue is influenced by the residue type. Several residues exert asymmetrical influence between the carboxyl and amino terminal polypeptide segments. The degree to which secondary structures depart from an average geometry also appears to depend on residue type. These departures are correlated to the corresponding Chou and Fasman parameters of amino acid residues. The frequency distribution of the side chain rotamers is influenced by polypeptide secondary structure. In turn, the rotamer conformation of side chain affects the extension of the secondary structure of the backbone. The strongest correlation is found between the occurrence of g+ conformation and helix propagation on the carboxyl side of many residues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The compounds Zn(C12H8N2)](2)C12N2H8(COO)(2)](2)center dot(C6H12O)center dot(H2O), I, Zn(C12H8N2)]C12N2H8(COO)(2)], II, Cd(C12H8N2)(H2O)]C12N2H8(COO)(2)]center dot(H2O), III, Zn(C10N2H8)]C12N2H8(COO)(2)]center dot 0.5(C10N2H8), IV, Cd(C12N2H8(COO)(2)center dot H2O], V, and Zn-3(mu(2)-O)(mu(3)-O)(3)]C12N2H8(COO)(2)], VI, have been synthesized by using a biphasic approach (I, III, V, VI) or regular hydrothermal method (II, IV). The compounds exhibit one (I and II), two (In), and three dimensionally (IV, V, VI) extended structures. The flexible azodibenzoate ligand gives rise to a 3-fold interpenetration (IV) when the synthesis was carried out using normal hydrothermal methods. The biphasic approach forms structures without any interpenetrations, especially in the three-dimensional structures of V and VI. Formation of Cd2O2 dimers in V and extended M-O(H)-M two-dimensional layers in VI suggests the subtle structural control achieved by the biphasic method. Transformation studies indicate that it is possible to transform I to II. Lewis acid catalytic studies have been performed to evaluate the role of the coordination environment in such reactions. All the compounds have been characterized by a variety of techniques that includes powder X-ray diffraction, infrared, thermogravitric analysis, UV-vis, photoluminescence studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lanthanide coordination polymers of the general formula Ln(2)(L)(5)(NO3)(H2O)(4)](n) (Ln = Eu (1), Tb (2), Gd (3)) supported by a novel aromatic carboxylate ligand 4-((1H-benzod]imidazol-1-yl)methyl)benzoic acid (HL) have been synthesized, characterized, and their photoluminescence behavior is examined. The powder X-ray diffraction patterns of complexes 1-3 showed that 1-3 are isostructural; thus, 1 has been chosen as an example to discuss in detail about the molecular structure by single-crystal X-ray diffraction. Complex 1 is a one-dimensional (1D) helical chain-like coordination polymer consisting of unique unsymmetrical dinuclear lanthanide building blocks. The 1D chains are further linked by the significant intermolecular hydrogen-bonding interactions to form a two-dimensional supramolecular network. The Tb3+ complex exhibits bright green luminescence efficiency in the solid state with a quantum yield of 15%. On the other hand, poor luminescence efficiency has been noted for Eu3+-benzoate complex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The easily constructed bile acid-based semi-rigid molecular tweezer 2 binds guest 8 in chloroform with an association constant of 83 dm(3) mol(-1).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The circular dichroism, fluorescence, Nuclear Magnetic Resonance and BLM conductance studies indicate that A23187 forms a stable complex with amino acids at low ionophore concentrations (<10(-4)M). However, A23187 prefers to be in a dimeric structure with no significant binding to amino acids, at concentrations higher than 10(-4)M. It was also observed that at lower concentrations, at which the amino acids bind to the ionophore, the affinity for calcium ions was several orders of magnitude lower than that at higher ionophore concentrations. We have also conducted molecular modeling studies to examine the structure of the A23187 dimer and its amino acid complexes. The results of these modeling studies strongly support our experimental results and validate the formation of a hydrogen bonded and energetically stable A23187 dimer and its amino acid complexes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of arachidonic acid (AA) on the activity of diacylglycerol (DG) kinase in neural membranes was investigated. When rat brain cortical membranes were incubated with 0.5 mM dipalmitin and [gamma-P-32]ATP, formation of phosphatidic acid (PA) was observed. It was linear up to 5 min, and the initial rate was similar to 1.0 nmol/min/mg of protein. The DG kinase activity was stimulated twofold by 0.25 mM AA. The stimulation was apparent at the earliest time point measured (1 min) and with the lowest concentration of AA tested (62.5 mu M). The stimulation was proportional to the concentration of AA up to 250 mu M. AA was the most potent stimulator of DG kinase, and linolenic acid showed similar to 40% stimulation. Oleic acid showed no effect, whereas linoleic and the saturated fatty acids tested were inhibitory. AA stimulation of DG kinase was observed only with membranes of cerebrum, cerebellum, and myelin and not with brain cytosol or liver membranes. AA also stimulated the formation of PA in the absence of added dipalmitin (endogenous activity) with membranes prepared from whole brain. DG kinase of neural membranes was extracted with 2 M NaCl, which on dialysis yielded a precipitate. Both the precipitate and the supernatant showed DG kinase activity, but only the enzyme in the precipitate was stimulated by AA at concentrations as low as 25 mu M. It is suggested that AA, through its effect on DG kinase, regulates the level of DG in neural membranes, which in turn regulates protein kinase C activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reduction of phenylglyoxalate 2a and pyruvate 2b with LiBH4 in THF at -80 degrees C yield the corresponding alpha-hydroxy esters with ca. 70% diastereoselectivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The conformation of 5-bromocytidine 5'-monophosphate in the title compound, Na+.C9H11BrN3O8P-.1.25H2O, is anti, C(3')-endo and gauche-gauche, similar to that in analogous non-halogenated nucleosides/nucleotides. The Na ion coordinates directly with phosphate O atoms and base atoms. Br is not involved in any stacking interaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of acid/base functional-groups associated with platinized-carbon electrodes on their catalytic activity toward electro-oxidation of methanol in sulfuric acid electrolyte at 60-degrees-C is studied. Platinized-carbon electrodes with sm amounts of functional groups exhibit higher catalytic activity compared to those with large concentrations of acidic/basic surface functionalities. The overpotential for methanol oxidation is minimum on electrodes of platinized carbons with pHzpc values between 6 and 7. An x-ray photoelectron spectroscopic study of various platinized carbons suggests that the acid/base surface functional-groups produce ample amounts of surface Pt-oxides and a consequent decrease in activity toward methanol oxidation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study is made of the electrooxidation of methanol in sulfuric acid on carbon-supported electrodes containing platinum-tin bimetal catalysts that are prepared by an in situ potentiometric-characterization route. The catalysts are investigated by employing chemical analyses, X-ray diffraction (XRD), X-ray absorption-near-edge spectroscopy (XANES) and X-ray photoelectron spectroscopy (XPS) data in conjunction with electrochemical measurements. From the electrochemical data, it is inferred that while an electrode with (3:1) Pt-Sn/C catalyst involves a two-electron rate-limiting step akin to platinum-on-carbon electrodes, it is shifted to a one-electron mechanism on electrodes with (3:2)Pt-Sn/C, (3:3)Pt-Sn/C, and (3:4)Pt-Sn/C catalysts. The study suggests that the tin content in the platinum-tin bimetal catalyst produces: (i) a charge transfer from tin to platinum; (ii) an increase in the coverage of adsorbed methanolic residues with increase in the tin content, as indicated by the shift in rest potential of the electrodes towards the reversible value for oxidation of methanol (0.043 V versus SHE), and (iii) a decrease in the overall content of higher valent platinum sites in the catalyst.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electro-oxidation of methanol was studied on carbon-supported Pt---Sn/C electrodes in silcotungstic acid (SiWA) at various concentrations. The porous-carbon electrodes employing Pt---Sn/C catalyst have been characterized using chemical analyses, X-ray powder diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) in conjunction with electrochemistry. The presence of Pt---Sn and Pt3Sn alloys along with Pt and SnO2 phases in the catalyst were identified by XRD. XPS analysis showed a lower amount of PtO species in the Pt---Sn/C catalyst with respect to the corresponding Pt/C sample. From the steady-state galvanostatic polarization data on Pt---Sn/C electrodes in SiWA, it is inferred that a one-electron process is the rate determining step. The performance of the electrodes in 0.084 M SiWA was better than in 2.5 M H2SO4 under similar conditions up to load currents of about 100 mA cm−2 indicating the promoting behaviour of the electrolyte. At currents larger than 100 mA cm−2, the performance of the electrodes in 0.084 SiWA was poorer than that in 2.5 M H2SO4 mainly due to the dominance of mass polarization in the former owing to the large size of keggin units associated with the structure of SiWA. This aspect was supported by cyclic voltammetry and ac impedance studies on Pt---Sn/C electrodes. Simulation of the electrochemical impedance response for the oxidation of methanol in SiWA was carried out using the equivalent electrical circuit model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Attempts to prepare hydrogen-bond-directed nonlinear optical materials from a 1:1 molar mixture Of D-(+)-dibenzoyltartaric acid (DBT, I) and 4-aminopyridine (4-AP, II) resulted in two salts of different stoichiometry. One of them crystallizes in an unusual 1.5:1 (acid:base) monohydrate salt form III while the other one crystallizes as 1:1 (acid:base) salt IV. Crystal structures of both of the salts were determined from single-crystal X-ray diffraction data. The salt III crystallizes in a monoclinic space group C2 with a = 30.339(l), b = 7.881(2), c = 14.355(1) angstrom, beta = 97.48(1)degrees, V = 3403.1(9) angstrom3, Z = 4, R(w) = 0.058, R(w)= 0.058. The salt IV also crystallizes in a monoclinic space group P2(1) with a = 7.500(1), b = 14.968(2), c = 10.370(1) angstrom, beta = 102.67(1)degrees, V = 1135.9(2) angstrom3, Z = 2, R = 0.043, R(w) = 0.043. Interestingly, two DBT molecules with distinctly different conformation are present in the same crystal lattice of salt III. Extensive hydrogen-bonding interactions are found in both of the salts, and both of them show SHG intensity 1.4-1.6 times that of urea.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gallic acid (GA), a key intermediate in the synthesis of plant hydrolysable tannins, is also a primary anti-inflammatory, cardio-protective agent found in wine, tea, and cocoa. In this publication, we reveal the identity of a gene and encoded protein essential for GA synthesis. Although it has long been recognized that plants, bacteria, and fungi synthesize and accumulate GA, the pathway leading to its synthesis was largely unknown. Here we provide evidence that shikimate dehydrogenase (SDH), a shikimate pathway enzyme essential for aromatic amino acid synthesis, is also required for GA production. Escherichia coli (E. coli) aroE mutants lacking a functional SDH can be complemented with the plant enzyme such that they grew on media lacking aromatic amino acids and produced GA in vitro. Transgenic Nicotiana tabacum lines expressing a Juglans regia SDH exhibited a 500% increase in GA accumulation. The J. regia and E. coli SDH was purified via overexpression in E. coli and used to measure substrate and cofactor kinetics, following reduction of NADP(+) to NADPH. Reversed-phase liquid chromatography coupled to electrospray mass spectrometry (RP-LC/ESI-MS) was used to quantify and validate GA production through dehydrogenation of 3-dehydroshikimate (3-DHS) by purified E. coli and J. regia SDH when shikimic acid (SA) or 3-DHS were used as substrates and NADP(+) as cofactor. Finally, we show that purified E. coli and J. regia SDH produced GA in vitro.