904 resultados para hydrated silica
Resumo:
Silica wet gels were prepared from acid sonohydrolysis of tetraethoxysilane (TEOS) and additions of poly(vinyl alcohol) (PVA)-water solution. Aerogels were obtained from supercritical CO(2) extraction. The samples were studied by thermal gravimetric (TG) analysis, small-angle X-ray scattering (SAXS), and nitrogen adsorption. The structure of wet gels can be described as a mass fractal with dimension D equal to 2.0 on the whole length scale experimentally probed by SAXS, from similar to 0.3 to similar to 15 nm. Pure and low-PVA-addition wet gels exhibit an upper cutoff accounting for a finite characteristic length xi of the mass fractal structure. Additions , of PVA increase without modifying D, which was attributed to a steric effect of the polymer in the structure. The pore volume fraction of the aerogels diminishes typically about 11% with respect to that of the wet gels, although nitrogen adsorption could be underestimating some porosity. The pore size distribution of the aerogels is shifted toward the mesopore region with the additions of PVA, in a straight relationship with the increase of xi in the wet gels. The thermal stability of the pore size distribution of the aerogels was studied up to 1000 degrees C.
Resumo:
Sonohydrolysis of mixtures of tetraethoxysilane (TEOS) and tetramethoxysilane (TMOS) with different TMOS/(TMOS + TEOS) molar ratio R was carried out to obtain similar to 2.0 x 10(-3) mol SiO2/cm(3) and similar to 86%-volume liquid phase wet gels. Aerogels were obtained by supercritical CO2 extraction in autoclave. The samples were analyzed by small-angle X-ray scattering (SAXS) and nitrogen adsorption. The structure of the wet gels can be described as a mass fractal structure with fractal dimension D similar to 2.2 and characteristic length increasing from similar to 4.6 nm for pure TEOS to similar to 6.4 nm for pure TMOS. A fraction of the porosity is eliminated with the supercritical process. The fundamental role of the TMOS/(TMOS + TEOS) molar ratio on the structure of the aerogels is to increase the porosity and the pore mean size as R changes from pure TEOS to pure TMOS. The supercritical process increases the mass fractal dimension and shortens the fractality domain in the mesopore region. A secondary structure appearing in the micropore region of the aerogels can be described as a mass/surface fractal structure with correlated mass fractal dimension D-m similar to 2.6 and surface fractal dimension D-s similar to 2.3. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Silica sonogels with different porosities were prepared by acid sono-hydrolysis of tetraethoxysilane. Wet sonogels were studied using small-angle x-ray scattering (SAXS) and differential scanning calorimetry (DSC). The DSC shows a broad thermal peak below the normal water melting point associated with the melting of confined ice nanocrystals, or nanoporosity. The nanopore size distribution was determined from the Gibbs-Thomson equation. As the porosity is increased, a second sharp DSC thermal peak with onset temperature at the water melting point is apparent, which was associated with the melting of ice macrocrystals, or macroporosity. The DSC result could be causing misinterpretation of the macroporosity because water may not be exactly confined in very feeble silica network regions in sonogels with high porosity. The structure of the wet gels can be described fairly well as mutually self-similar mass fractal structures with characteristic length. increasing from similar to 1.8 to similar to 5.4 nm and mass fractal dimension D diminishing discretely from similar to 2.6 to similar to 2.3 as the porosity increases in the range studied. More specifically, such a structure could be described using a two-parameter correlation function gamma(r) similar to r(D-3) exp(-r/xi), which is limited at larger scale by the cut-off distance xi but without a well-defined small scale cut-off distance, at least up to the maximum angular domain probed using SAXS in the present study.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Reliable spectral analysis is only achieved if the spectrum is thoroughly investigated in regard to all hidden and overlapped peaks. This paper describes the steps undertaken to find and separate such peaks in the range of 3000 to 4000 cm(-1) in the case of three different infrared absorption spectra of the glass surface of hydrolyzed silica optical fibers. Peak finding was done by the analysis of the second and fourth derivatives of the digital data, coupled with the available knowledge of infrared spectroscopy of silica-water interaction in the investigated range. Peak separation was accomplished by curve fitting with four different models. The model with the best fit was described by a sum of pure Gaussian peaks. Shoulder limit and detection limit maps were used to validate the revealed spectral features.
Resumo:
Er(3+) doped (100-x)SiO(2)-xZrO(2) planar waveguides were prepared by the sol-gel route, with x ranging from 10 up to 30 mol%. Multilayer films doped with 0.3 mol% Er(3+) ions were deposited on fused quartz substrates by the dip-coating technique. The thickness and refractive index were measured by m-line spectroscopy at different wavelengths. The fabrication protocol was optimized in order to confine one propagating mode at 1.5 mu m. Photoluminescence in the near and visible region indicated a crystalline local environment for the Er(3+) ion. (c) 2007 Elsevier B.V. All rights reserved.