677 resultados para homoclinic bifurcation
Resumo:
The understanding of the structure and dynamics of the intricate network of connections among people that consumes products through Internet appears as an extremely useful asset in order to study emergent properties related to social behavior. This knowledge could be useful, for example, to improve the performance of personal recommendation algorithms. In this contribution, we analyzed five-year records of movie-rating transactions provided by Netflix, a movie rental platform where users rate movies from an online catalog. This dataset can be studied as a bipartite user-item network whose structure evolves in time. Even though several topological properties from subsets of this bipartite network have been reported with a model that combines random and preferential attachment mechanisms [Beguerisse Díaz et al., 2010], there are still many aspects worth to be explored, as they are connected to relevant phenomena underlying the evolution of the network. In this work, we test the hypothesis that bursty human behavior is essential in order to describe how a bipartite user-item network evolves in time. To that end, we propose a novel model that combines, for user nodes, a network growth prescription based on a preferential attachment mechanism acting not only in the topological domain (i.e. based on node degrees) but also in time domain. In the case of items, the model mixes degree preferential attachment and random selection. With these ingredients, the model is not only able to reproduce the asymptotic degree distribution, but also shows an excellent agreement with the Netflix data in several time-dependent topological properties.
Resumo:
We introduce a new methodology to characterize the role that a given node plays inside the community structure of a complex network. Our method relies on the ability of the links to reduce the number of steps between two nodes in the network, which is measured by the number of shortest paths crossing each link, and its impact on the node proximity. In this way, we use node closeness to quantify the importance of a node inside its community. At the same time, we define a participation coefficient that depends on the shortest paths contained in the links that connect two communities. The combination of both parameters allows to identify the role played by the nodes in the network, following the same guidelines introduced by Guimerà et al. [Guimerà & Amaral, 2005] but, in this case, considering global information about the network. Finally, we give some examples of the hub characterization in real networks and compare our results with the parameters most used in the literature.
Resumo:
The objective of this work is to analyze the local hem odynamic changes caused in a coronary bifurcation by three different stenting techniques: simple stenting of the main vessel, simple stenting of the main vessel with kissing balloon in the side branch and culotte. To carry out this study an idealized geometry of a coronary bifurcation is used, and two bifurcation angles, 45º and 90º, are chosen as representative of the wide variety of re al configurations. In order to quantify the influence of the stenting technique on the local blood flow, both numeri- cal simulations and experimental measurements are performed. First, steady simulations are carried out with the commercial code ANSYS-Fluent, and then, experimental measurements with PIV (Particle Image Velocimetry) obtained in the laboratory are used to validate the numerical simulation. The steady computational simulations show a good overall agreement with the experimental data. Second, pulsatile flow is considered to take into account the tran- sient effects. The time averaged wall shear stress, scillatory shear index and pressure drop obtained numerically are used to compare the behavior of the stenting techniques.
Resumo:
A generic, sudden transition to chaos has been experimentally verified using electronic circuits. The particular system studied involves the near resonance of two coupled oscillators at 2:1 frequency ratio when the damping of the first oscillator becomes negative. We identified in the experiment all types of orbits described by theory. We also found that a theoretical, ID limit map fits closely a map of the experimental attractor which, however, could be strongly disturbed by noise. In particular, we found noisy periodic orbits, in good agreement with noise theory.
Resumo:
Nonlinearly coupled, damped oscillators at 1:1 frequency ratio, one oscillator being driven coherently for efficient excitation, are exemplified by a spherical swing with some phase-mismatch between drive and response. For certain damping range, excitation is found to succeed if it lags behind, but to produce a chaotic attractor if it leads the response. Although a period-doubhng sequence, for damping increasing, leads to the attractor, this is actually born as a hard (as regards amplitude) bifurcation at a zero growth-rate parametric line; as damping decreases, an unstable fixed point crosses an invariant plane to enter as saddle-focus a phase-space domain of physical solutions. A second hard bifurcation occurs at the zero mismatch line, the saddle-focus leaving that domain. Times on the attractor diverge when approaching either fine, leading to exactly one-dimensional and noninvertible limit maps, which are analytically determined.
Resumo:
We review recent computational results for hexagon patterns in non- Boussinesq convection. For sufficiently strong dependence of the fluid parameters on the temperature we find reentrance of steady hexagons, i.e. while near onset the hexagon patterns become unstable to rolls as usually, they become again stable in the strongly nonlinear regime. If the convection apparatus is rotated about a vertical axis the transition from hexagons to rolls is replaced by a Hopf bifurcation to whirling hexagons. For weak non-Boussinesq effects they display defect chaos of the type described by the two-dimensional (2D) complex Ginzburg-andau equation. For stronger non-Boussinesq effects the Hopf bifurcation becomes subcritical and localized bursting of the whirling amplitude is found. In this regime the cou- pling of the whirling amplitude to (small) deformations of the hexagon lattice becomes important. For yet stronger non-Boussinesq effects this coupling breaks up the hexagon lattice and strongly disordered states characterized by whirling and lattice defects are obtained.
Resumo:
We study a model equation that mimics convection under rotation in a fluid with temperature- dependent properties (non-Boussinesq (NB)), high Prandtl number and idealized boundary conditions. It is based on a model equation proposed by Segel [1965] by adding rotation terms that lead to a Kuppers-Lortz instability [Kuppers & Lortz, 1969] and can develop into oscillating hexagons. We perform a weakly nonlinear analysis to find out explicitly the coefficients in the amplitude equation as functions of the rotation rate. These equations describe hexagons and os- cillating hexagons quite well, and include the Busse?Heikes (BH) model [Busse & Heikes, 1980] as a particular case. The sideband instabilities as well as short wavelength instabilities of such hexagonal patterns are discussed and the threshold for oscillating hexagons is determined.
Resumo:
We report numerical evidence of the effects of a periodic modulation in the delay time of a delayed dynamical system. By referring to a Mackey-Glass equation and by adding a modula- tion in the delay time, we describe how the solution of the system passes from being chaotic to shadow periodic states. We analyze this transition for both sinusoidal and sawtooth wave mod- ulations, and we give, in the latter case, the relationship between the period of the shadowed orbit and the amplitude of the modulation. Future goals and open questions are highlighted.
Resumo:
We employ numerical computations of the full Navier-Stokes equations to investigate non-Boussinesq convection in a rotating system using water as the working fluid. We identify two regimes. For weak non- Boussinesq effects the Hopf bifurcation from steady to oscillating (whirling) hexagons is supercritical and typical states exhibit defect chaos that is systematically described by the cubic complex Ginzburg-Landau equation. For stronger non-Boussinesq effects the Hopf bifurcation becomes subcritical and the oscil- lations exhibit localized chaotic bursting, which is modeled by a quintic complex Ginzburg-Landau equation.
Resumo:
Recently, a theoretical criterion to calculate the stability of an axial-flow compressor rotor has been presented in the scientific literature. This theoretical criterion was used for determining the locus of the stability line over the rotor map and for predicting the post-stall evolution of the constant-speed line of a rotor. The main objective of this paper is to improve the predictions of such a model. To do that, the paper proposes a different characterization of the characteristic azimuthal length and a calculation of the ratio of specific heats based on a polytropic exponent. Thanks to these new values, the model predicts two bifurcation points in the behaviour of the flow: the inception point of the instability and the surge point. Experimental data from a pure axial compressor are used to validate the model showing that the prediction of the flow coefficient at the surge point has an error inferior to 5%. For the rotor studied, the paper provides a quantitative and qualitative description of the inception of the instability and of the mechanism involved in the instable region of the compressor map. The paper also discusses the role of rotor efficiency in the position of the bifurcations and gives a sensitivity analysis of its position. Finally, it presents a discussion about how the model can explain the different behaviours exhibited by the same rotor when the flow coefficient is reduced
Resumo:
La configuración de un cilindro acoplado a una semi-esfera, conocida como ’hemispherecylinder’, se considera como un modelo simplificado para numerosas aplicaciones industriales tales como fuselaje de aviones o submarinos. Por tanto, el estudio y entendimiento de los fenómenos fluidos que ocurren alrededor de dicha geometría presenta gran interés. En esta tesis se muestra la investigación del origen y evolución de los, ya conocidos, patrones de flujo (burbuja de separación, vórtices ’horn’ y vórtices ’leeward’) que se dan en esta geometría bajo condiciones de flujo separado. Para ello se han llevado a cabo simulaciones numéricas (DNS) y ensayos experimentales usando la técnica de Particle Image Velocimetry (PIV), para una variedad de números de Reynolds (Re) y ángulos de ataque (AoA). Se ha aplicado sobre los resultados numéricos la teoría de puntos críticos obteniendo, por primera vez para esta geometría, un diagrama de bifurcaciones que clasifica los diferentes regímenes topológicos en función del número de Reynolds y del ángulo de ataque. Se ha llevado a cabo una caracterización completa sobre el origen y la evolución de los patrones estructurales característicos del cuerpo estudiado. Puntos críticos de superficie y líneas de corriente tridimensionales han ayudado a describir el origen y la evolución de las principales estructuras presentes en el flujo hasta alcanzar un estado de estabilidad desde el punto de vista topológico. Este estado se asocia con el patrón de los vórtices ’horn’, definido por una topología característica que se encuentra en un rango de números de Reynolds muy amplio y en regímenes compresibles e incompresibles. Por otro lado, con el objeto de determinar las estructuras presentes en el flujo y sus frecuencias asociadas, se han usado distintas técnicas de análisis: Proper Orthogonal Decomposition (POD), Dynamic Mode Decomposition (DMD) y análisis de Fourier. Dichas técnicas se han aplicado sobre los datos experimentales y numéricos, demostrándose la buena concordancia entre ambos resultados. Finalmente, se ha encontrado en ambos casos, una frecuencia dominante asociada con una inestabilidad de los vórtices ’leeward’. ABSTRACT The hemisphere-cylinder may be considered as a simplified model for several geometries found in industrial applications such as aircrafts’ fuselages or submarines. Understanding the complex flow phenomena that surrounds this particular geometry is therefore of major industrial interest. This thesis presents an investigation of the origin and evolution of the complex flow pattern; i.e. separation bubbles, horn vortices and leeward vortices, around the hemisphere-cylinder under separated flow conditions. To this aim, threedimensional Direct Numerical Simulations (DNS) and experimental tests, using Particle Image Velocimetry (PIV) techniques, have been performed for a variety of Reynolds numbers (Re) and angles of attack (AoA). Critical point theory has been applied to the numerical simulations to provide, for the first time for this geometry, a bifurcation diagram that classifies the different flow topology regimes as a function of the Reynolds number and the angle of attack. A complete characterization about the origin and evolution of the complex structural patterns of this geometry has been put in evidence. Surface critical points and surface and volume streamlines were able to describe the main flow structures and their strong dependence with the flow conditions up to reach the structurally stable state. This state was associated with the pattern of the horn vortices, found on ranges from low to high Reynolds numbers and from incompressible to compressible regimes. In addition, different structural analysis techniques have been employed: Proper Orthogonal Decomposition (POD), Dynamic Mode Decomposition (DMD) and Fourier analysis. These techniques have been applied to the experimental and numerical data to extract flow structure information (i.e. modes and frequencies). Experimental and numerical modes are shown to be in good agreement. A dominant frequency associated with an instability of the leeward vortices has been identified in both, experimental and numerical results.
Resumo:
A novel method for generating patient-specific high quality conforming hexahedral meshes is presented. The meshes are directly obtained from the segmentation of patient magnetic resonance (MR) images of abdominal aortic aneu-rysms (AAA). The MRI permits distinguishing between struc-tures of interest in soft tissue. Being so, the contours of the lumen, the aortic wall and the intraluminal thrombus (ILT) are available and thus the meshes represent the actual anato-my of the patient?s aneurysm, including the layered morpholo-gies of these structures. Most AAAs are located in the lower part of the aorta and the upper section of the iliac arteries, where the inherent tortuosity of the anatomy and the presence of the ILT makes the generation of high-quality elements at the bifurcation is a challenging task. In this work we propose a novel approach for building quadrilateral meshes for each surface of the sectioned geometry, and generating conforming hexahedral meshes by combining the quadrilateral meshes. Conforming hexahedral meshes are created for the wall and the ILT. The resulting elements are evaluated on four patients? datasets using the Scaled Jacobian metric. Hexahedral meshes of 25,000 elements with 94.8% of elements well-suited for FE analysis are generated.
Resumo:
We investigate how hubs of functional brain networks are modified as a result of mild cognitive impairment (MCI), a condition causing a slight but noticeable decline in cognitive abilities, which sometimes precedes the onset of Alzheimer's disease. We used magnetoencephalography (MEG) to investigate the functional brain networks of a group of patients suffering from MCI and a control group of healthy subjects, during the execution of a short-term memory task. Couplings between brain sites were evaluated using synchronization likelihood, from which a network of functional interdependencies was constructed and the centrality, i.e. importance, of their nodes was quantified. The results showed that, with respect to healthy controls, MCI patients were associated with decreases and increases in hub centrality respectively in occipital and central scalp regions, supporting the hypothesis that MCI modifies functional brain network topology, leading to more random structures.
Resumo:
This paper presents a theoretical framework intended to accommodate circuit devices described by characteristics involving more than two fundamental variables. This framework is motivated by the recent appearance of a variety of so-called mem-devices in circuit theory, and makes it possible to model the coexistence of memory effects of different nature in a single device. With a compact formalism, this setting accounts for classical devices and also for circuit elements which do not admit a two-variable description. Fully nonlinear characteristics are allowed for all devices, driving the analysis beyond the framework of Chua and Di Ventra We classify these fully nonlinear circuit elements in terms of the variables involved in their constitutive relations and the notions of the differential- and the state-order of a device. We extend the notion of a topologically degenerate configuration to this broader context, and characterize the differential-algebraic index of nodal models of such circuits. Additionally, we explore certain dynamical features of mem-circuits involving manifolds of non-isolated equilibria. Related bifurcation phenomena are explored for a family of nonlinear oscillators based on mem-devices.
Resumo:
The type-I intermittency route to (or out of) chaos is investigated within the horizontal visibility (HV) graph theory. For that purpose, we address the trajectories generated by unimodal maps close to an inverse tangent bifurcation and construct their associatedHVgraphs.We showhowthe alternation of laminar episodes and chaotic bursts imprints a fingerprint in the resulting graph structure. Accordingly, we derive a phenomenological theory that predicts quantitative values for several network parameters. In particular, we predict that the characteristic power-law scaling of the mean length of laminar trend sizes is fully inherited by the variance of the graph degree distribution, in good agreement with the numerics. We also report numerical evidence on how the characteristic power-law scaling of the Lyapunov exponent as a function of the distance to the tangent bifurcation is inherited in the graph by an analogous scaling of block entropy functionals defined on the graph. Furthermore, we are able to recast the full set of HV graphs generated by intermittent dynamics into a renormalization-group framework, where the fixed points of its graph-theoretical renormalization-group flow account for the different types of dynamics.We also establish that the nontrivial fixed point of this flow coincides with the tangency condition and that the corresponding invariant graph exhibits extremal entropic properties.