940 resultados para high temperature superconductor


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have observed that Calanus sinicus retreated from neritic areas in the Yellow Sea and concentrated in the Yellow Sea Cold Bottom Water (YSCBW) area in summer. To investigate the summer reproductive strategy of C. sinicus in this situation, effects of high temperature on reproduction and hatching, as well as geographical variation of in situ egg production rate, were studied by onboard incubation in August 2001. Diel vertical migration (DVM) of females was investigated within and outside the YSCBW, respectively. Onboard incubation at 27 degrees C (i.e. surface temperature) resulted in lower fecundities than that at 9.8 and 12 degrees C (i.e. bottom temperature inside and outside the YSCBW) together with decreased hatching rates and increased naupliar malformation. Egg production was more active at stations outside the YSCBW than inside, where chlorophyll-a concentration was also relatively low. Females inside the YSCBW underwent DVM although they rarely entered the surface layer, but DVM was not observed outside the YSCBW. We conclude that surface temperature in summer has deleterious effects on C. sinicus egg production and hatching, and that it cannot reproduce successfully over the whole area. Inside the YSCBW, egg production is depressed by low food availability, while females outside suffer from high temperatures because of strong vertical mixing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have excited mid-infrared surface plasmons in two YBCO thin films of contrasting properties using attenuated total reflection of light and found that the imaginary part of the dielectric function decreases linearly with reduction in temperature. This result is in contrast with the commonly reported conclusion of infrared normal reflectance studies. If sustained it may clarify the problem of understanding the normal state properties of YBCO and the other cuprates. The dielectric function of the films, epsilon = epsilon(1) + i epsilon(2), was determined between room temperature and 80K: epsilon(1) was found to be only slightly temperature dependent but somewhat sample dependent, probably as a result of surface and grain boundary contamination. The imaginary part, epsilon(2), (and the real part of the conductivity, sigma(1),) decreased linearly with reduction in temperature in both films. Results obtained were: for film 1: epsilon(1) = - 14.05 - 0.0024T and epsilon(2) - 4.11 + 0.086T and for film 2: epsilon(1) = - 24.09 + 0.0013T and epsilon(2) = 7.66 + 0.067T where T is the temperature in Kelvin. An understanding of the results is offered in terms of temperature-dependent intrinsic intragrain inelastic scattering and temperature-independent contributions: elastic and inelastic grain boundary scattering and optical interband (or localised charge) absorption. The relative contribution of each is estimated. A key conclusion is that the interband (or localised charge) absorption is only similar to 10%. Most importantly, the intrinsic scattering rate, 1/tau, decreases linearly with fall in temperature, T, in a regime where current theory predicts dependence on frequency, omega, to dominate. The coupling constant, lambda, between the charge carriers and the thermal excitations has a value of 1.7, some fivefold greater than the far infrared value. These results imply a need to restate the phenomenology of the normal state of high temperature superconductors and seek a corresponding theoretical understanding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High temperature superconductors were discovered in 1986, but despite considerable research efforts, both experimental and theoretical, these materials remain poorly understood. Because their electronic structure is both inhomogeneous and highly correlated, a full understanding will require knowledge of quasiparticle properties both in real space and momentum space. In this thesis, we will present a theoretical analysis of the scanning tunneling microscopy (STM) data in BSCCO. We introduce the Bogoliubov-De Gennes Hamiltonian and solve it numerically on a two-dimensional 20 x 20 lattice under a magnetic field perpendicular to the surface. We consider a vortex at the center of our model. We introduce a Zn impurity in our lattice as a microscopic probe of the physical properties of BSCCO. By direct numerical diagonalization of the lattice BogoliubovDe Gennes Hamiltonian for different positions of the impurity, we can calculate the interaction between the vortex and the impurity in a d-wave superconductor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate change is increasing night temperature (NT) more than day temperature (DT) in rice-growing areas. Effects of combinations of NT (24-35°C) from microsporogenesis to anthesis at one or more DT (30 or 35°C) at anthesis on rice spikelet fertility, temperature within spikelets, flowering pattern, grain weight per panicle, amylose content and gel consistency were investigated in contrasting rice cultivars under controlled environments. Cultivars differed in spikelet fertility response to high NT, with higher fertility associated with cooler spikelets (P < 0.01). Flowering dynamics were altered by high NT and a novel high temperature tolerance complementary mechanism, shorter flower open duration in cv. N22, was identified. High NT reduced spikelet fertility, grain weight per panicle, amylose content and gel consistency, whereas high DT reduced only gel consistency. Night temperature >27°C was estimated to reduce grain weight. Generally, high NT was more damaging to grain weight and selected grain quality traits than high DT, with little or no interaction between them. The critical tolerance and escape traits identified, i.e. spikelet cooling, relatively high spikelet fertility, earlier start and peak time of anthesis and shorter spikelet anthesis duration can aid plant breeding programs targeting resilience in warmer climates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study was conducted to evaluate the zootechnical parameters and age related changes in physiological responses of broiler chickens exposed to hot environment from early age onwards. The broiler chickens were exposed to high temperature (30 degreesC) at 15 d of age and maintained to Day 38 or maintained under thermoneutral environment (control).No significant decrease in feed consumption (FC) and body weight (BW) gain was observed in high temperature group after 7 d of exposure, but in the subsequent period, heat exposure lowered BW and FC, compared to control group. However, the weight gain was not significantly changed after 24 d of exposure, and the feed efficiency was not affected throughout the experimental period.The venous pCO(2) pressure was only significantly decreased by temperature after 24 d of heat exposure. The glucose, non-esterified fatty acid (NEFA), triglyceride (TG), glucose, lipid peroxidation (LPO), creatine kinase (CK), and corticosterone were not influenced by the temperature treatment. The significant decrease in uric acid and increase in lactate concentration due to high temperature were observed respectively at 28 and 35 d of age. The concentrations of triiodothyronine (T-3) and thyroxine (T-4) were changed oppositely at 28 d of age, as T-3 was decreased and T-4 was elevated by high temperature. However, the concentration of T-4 in plasma was decreased whereas T-3 was not changed at 38 d of age. The relationships between the blood parameters were changed due to the temperature treatment, suggesting that not only absolute values but also their interrelationships have to be considered when studying the effects of a particular treatment on physiological functioning.These results suggest the growth and physiological responses of broiler chickens, exposed to high temperature from early age onwards, differed at different stages of acclimation. The process of heat acclimation is related to the mode of heat exposure imposed and is not only reflected in the changes in the absolute concentrations, but also in the correlations among the blood indices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The temperature dependencies of specific heat and spin susceptibility of a coupled dx2-y2 + idxy superconductor in the presence of a weak dxy component are investigated in the tight-binding model (1) on square lattice and (2) on a lattice with orthorhombic distortion. As the temperature is lowered past the critical temperature Tc, first a less ordered dx2-y2 superconductor is created, which changes to a more ordered dx2-y2 + idxy superconductor at Tcl(< Tc). This manifests in two second order phase transitions identified by two jumps in specific heat at Tc and Tc1. The temperature dependencies of the superconducting observables exhibit a change from power-law to exponential behavior as temperature is lowered below Tc1 and confirm the new phase transition. © 1998 Published by Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrogen has been considered as a potentially efficient and environmentally friendly alternative energy solution. However, one of the most important scientific and technical challenges that the "hydrogen economy" faces is the development of safe and economically viable on-board hydrogen storage for fuel cell applications, especially to the transportation sector. Ammonia borane (BH3NH 3), a solid state hydrogen storage material, possesses exceptionally high hydrogen content (19.6 wt%).However, a fairly high temperature is required to release all the hydrogen atoms, along with the emission of toxic borazine. Recently research interests are focusing on the improvement of H2 discharge from ammonia borane (AB) including lowering the dehydrogenation temperature and enhancing hydrogen release rate using different techniques. Till now the detailed information about the bonding characteristics of AB is not sufficient to understand details about its phases and structures. ^ Elemental substitution of ammonia borane produces metal amidoboranes. Introduction of metal atoms to the ammonia borane structure may alter the bonding characteristics. Lithium amidoborane is synthesized by ball milling of ammonia borane and lithium hydride. High pressure study of molecular crystal provides unique insight into the intermolecular bonding forces and phase stability. During this dissertation, Raman spectroscopic study of lithium amidoborane has been carried out at high pressure in a diamond anvil cell. It has been identified that there is no dihydrogen bond in the lithium amidoborane structure, whereas dihydrogen bond is the characteristic bond of the parent compound ammonia borane. It has also been identified that the B-H bond becomes weaker, whereas B-N and N-H bonds become stronger than those in the parent compound ammonia borane. At high pressure up to 15 GPa, Raman spectroscopic study indicates two phase transformations of lithium amidoborane, whereas synchrotron X-ray diffraction data indicates only one phase transformation of this material. ^ Pressure and temperature has a significant effect on the structural stability of ammonia borane. This dissertation explored the phase transformation behavior of ammonia borane at high pressure and low temperature using in situ Raman spectroscopy. The P-T phase boundary between the tetragonal (I4mm) and orthorhombic (Pmn21) phases of ammonia borane has been determined. The transition has a positive Clapeyron slope which indicates the transition is of exothermic in nature. Influence of nanoconfinemment on the I4mm to Pmn2 1 phase transition of ammonia borane was also investigated. Mesoporus silica scaffolds SBA-15 with pore size of ~8 nm and MCM-41 with pore size of 2.1-2.7 nm, were used to nanoconfine ammonia borane. During cooling down, the I4mm to Pmn21 phase transition was not observed in MCM-41 nanoconfined ammonia borane, whereas the SBA-15 nanocondfined ammonia borane shows the phase transition at ~195 K. Four new phases of ammonia borane were also identified at high pressure up to 15 GPa and low temperature down to 90 K.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrogen has been considered as a potentially efficient and environmentally friendly alternative energy solution. However, one of the most important scientific and technical challenges that the “hydrogen economy” faces is the development of safe and economically viable on-board hydrogen storage for fuel cell applications, especially to the transportation sector. Ammonia borane (BH3NH3), a solid state hydrogen storage material, possesses exceptionally high hydrogen content (19.6 wt%).However, a fairly high temperature is required to release all the hydrogen atoms, along with the emission of toxic borazine. Recently research interests are focusing on the improvement of H2 discharge from ammonia borane (AB) including lowering the dehydrogenation temperature and enhancing hydrogen release rate using different techniques. Till now the detailed information about the bonding characteristics of AB is not sufficient to understand details about its phases and structures. Elemental substitution of ammonia borane produces metal amidoboranes. Introduction of metal atoms to the ammonia borane structure may alter the bonding characteristics. Lithium amidoborane is synthesized by ball milling of ammonia borane and lithium hydride. High pressure study of molecular crystal provides unique insight into the intermolecular bonding forces and phase stability. During this dissertation, Raman spectroscopic study of lithium amidoborane has been carried out at high pressure in a diamond anvil cell. It has been identified that there is no dihydrogen bond in the lithium amidoborane structure, whereas dihydrogen bond is the characteristic bond of the parent compound ammonia borane. It has also been identified that the B-H bond becomes weaker, whereas B-N and N-H bonds become stronger than those in the parent compound ammonia borane. At high pressure up to 15 GPa, Raman spectroscopic study indicates two phase transformations of lithium amidoborane, whereas synchrotron X-ray diffraction data indicates only one phase transformation of this material. Pressure and temperature has a significant effect on the structural stability of ammonia borane. This dissertation explored the phase transformation behavior of ammonia borane at high pressure and low temperature using in situ Raman spectroscopy. The P-T phase boundary between the tetragonal (I4mm) and orthorhombic (Pmn21) phases of ammonia borane has been determined. The transition has a positive Clapeyron slope which indicates the transition is of exothermic in nature. Influence of nanoconfinemment on the I4mm to Pmn21 phase transition of ammonia borane was also investigated. Mesoporus silica scaffolds SBA-15 with pore size of ~8 nm and MCM-41 with pore size of 2.1-2.7 nm, were used to nanoconfine ammonia borane. During cooling down, the I4mm to Pmn21 phase transition was not observed in MCM-41 nanoconfined ammonia borane, whereas the SBA-15 nanocondfined ammonia borane shows the phase transition at ~195 K. Four new phases of ammonia borane were also identified at high pressure up to 15 GPa and low temperature down to 90 K.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: A number of studies have examined the relationship between high ambient temperature and mortality. Recently, concern has arisen about whether this relationship is modified by socio-demographic factors. However, data for this type of study is relatively scarce in subtropical/tropical regions where people are well accustomed to warm temperatures. Objective: To investigate whether the relationship between daily mean temperature and daily all-cause mortality is modified by age, gender and socio-economic status (SES) in Brisbane, Australia. Methods: We obtained daily mean temperature and all-cause mortality data for Brisbane, Australia during 1996–2004. A generalised additive model was fitted to assess the percentage increase in all deaths with every one degree increment above the threshold temperature. Different age, gender and SES groups were included in the model as categorical variables and their modification effects were estimated separately. Results: A total of 53,316 non-external deaths were included during the study period. There was a clear increasing trend in the harmful effect of high temperature on mortality with age. The effect estimate among women was more than 20 times that among men. We did not find an SES effect on the percent increase associated with temperature. Conclusions: The effects of high temperature on all deaths were modified by age and gender but not by SES in Brisbane, Australia.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The relationship between weather and mortality has been observed for centuries. Recently, studies on temperature-related mortality have become a popular topic as climate change continues. Most of the previous studies found that exposure to hot or cold temperature affects mortality. This study aims to address three research questions: 1. What is the overall effect of daily mean temperature variation on the elderly mortality in the published literature using a meta-analysis approach? 2. Does the association between temperature and mortality differ with age, sex, or socio-economic status in Brisbane? 3. How is the magnitude of the lag effects of the daily mean temperature on mortality varied by age and cause-of-death groups in Brisbane? In the meta-analysis, there was a 1-2 % increase in all-cause mortality for a 1ºC decrease during cold temperature intervals and a 2-5% increase for a 1ºC increment during hot temperature intervals among the elderly. Lags of up to 9 days in exposure to cold temperature intervals were statistically significantly associated with all-cause mortality, but no significant lag effects were observed for hot temperature intervals. In Brisbane, the harmful effect of high temperature (over 24ºC) on mortality appeared to be greater among the elderly than other age groups. The effect estimate among women was greater than among men. However, No evidence was found that socio-economic status modified the temperature-mortality relationship. The results of this research also show longer lag effects in cold days and shorter lag effects in hot days. For 3-day hot effects associated with 1°C increase above the threshold, the highest percent increases in mortality occurred among people aged 85 years or over (5.4% (95% CI: 1.4%, 9.5%)) compared with all age group (3.2% (95% CI: 0.9%, 5.6%)). The effect estimate among cardiovascular deaths was slightly higher than those among all-cause mortality. For overall 21-day cold effects associated with a 1°C decrease below the threshold, the percent estimates in mortality for people aged 85 years or over, and from cardiovascular diseases were 3.9% (95% CI: 1.9%, 6.0%) and 3.4% (95% CI: 0.9%, 6.0%), respectively compared with all age group (2.0% (95% CI: 0.7%, 3.3%)). Little research of this kind has been conducted in the Southern Hemisphere. This PhD research may contribute to the quantitative assessment of the overall impact, effect modification and lag effects of temperature variation on mortality in Australia and The findings may provide useful information for the development and implementation of public health policies to reduce and prevent temperature-related health problems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We examined the variation in association between high temperatures and elderly mortality (age ≥ 75 years) from year to year in 83 US cities between 1987 and 2000. We used a Poisson regression model and decomposed the mortality risk for high temperatures into: a “main effect” due to high temperatures using lagged non-linear function, and an “added effect” due to consecutive high temperature days. We pooled yearly effects across both regional and national levels. The high temperature effects (both main and added effects) on elderly mortality varied greatly from year to year. In every city there was at least one year where higher temperatures were associated with lower mortality. Years with relatively high heat-related mortality were often followed by years with relatively low mortality. These year to year changes have important consequences for heat-warning systems and for predictions of heat-related mortality due to climate change.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Different types of HTS joints of Bi-2212/Ag tapes and laminates, which are fabricated by dip-coating and partial-melt processes, have been investigated. All joints are prepared using green single and laminated tapes and according to the scheme: coating-joining-processing. The heat treated tapes have critical current (Ic) between 7 and 27 A, depending on tape thickness and the number of Bi-2212 ceramic layers in laminated tapes. It is found that the current transport properties of joints depend on the type of laminate, joint configuration and joint treatment, Ic losses in joints of Bi-2212 tapes and laminates are attributed to defects in their structure, such as pores, secondary phases and misalignment of Bi-2212 grains near the Ag edges. By optimizing joint configuration, current transmission up to 100% is achieved for both single tapes and laminated tapes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Superconducting Bi-2212 tapes and laminates are fabricated by a combination of dip-coating and partial melt processing. The heat treated tapes have critical current densities (Jc) up to 11 kAcm -2. We investigate the degradation of critical current (Ic) during bending experiments for both single tapes and tapes with laminate structure. Although degradation of Ic is observed in both forms, the characteristics of the degradation differ. It is determined that laminated tapes perform better than single tapes when critical current is measured against bending radius, and laminated tapes tolerate a higher strain for a given reduction in critical current. It is found that increasing the number of Bi-2212 layers increases the total Ic of the laminated tape, but degradation of critical current is more pronounced during bending because of the increased total thickness of the laminate structure. It is also found that addition of silver to the Bi-2212 layers reduces critical current degradation during bending for both tapes and laminates.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The health impacts of exposure to ambient temperature have been drawing increasing attention from the environmental health research community, government, society, industries, and the public. Case-crossover and time series models are most commonly used to examine the effects of ambient temperature on mortality. However, some key methodological issues remain to be addressed. For example, few studies have used spatiotemporal models to assess the effects of spatial temperatures on mortality. Few studies have used a case-crossover design to examine the delayed (distributed lag) and non-linear relationship between temperature and mortality. Also, little evidence is available on the effects of temperature changes on mortality, and on differences in heat-related mortality over time. This thesis aimed to address the following research questions: 1. How to combine case-crossover design and distributed lag non-linear models? 2. Is there any significant difference in effect estimates between time series and spatiotemporal models? 3. How to assess the effects of temperature changes between neighbouring days on mortality? 4. Is there any change in temperature effects on mortality over time? To combine the case-crossover design and distributed lag non-linear model, datasets including deaths, and weather conditions (minimum temperature, mean temperature, maximum temperature, and relative humidity), and air pollution were acquired from Tianjin China, for the years 2005 to 2007. I demonstrated how to combine the case-crossover design with a distributed lag non-linear model. This allows the case-crossover design to estimate the non-linear and delayed effects of temperature whilst controlling for seasonality. There was consistent U-shaped relationship between temperature and mortality. Cold effects were delayed by 3 days, and persisted for 10 days. Hot effects were acute and lasted for three days, and were followed by mortality displacement for non-accidental, cardiopulmonary, and cardiovascular deaths. Mean temperature was a better predictor of mortality (based on model fit) than maximum or minimum temperature. It is still unclear whether spatiotemporal models using spatial temperature exposure produce better estimates of mortality risk compared with time series models that use a single site’s temperature or averaged temperature from a network of sites. Daily mortality data were obtained from 163 locations across Brisbane city, Australia from 2000 to 2004. Ordinary kriging was used to interpolate spatial temperatures across the city based on 19 monitoring sites. A spatiotemporal model was used to examine the impact of spatial temperature on mortality. A time series model was used to assess the effects of single site’s temperature, and averaged temperature from 3 monitoring sites on mortality. Squared Pearson scaled residuals were used to check the model fit. The results of this study show that even though spatiotemporal models gave a better model fit than time series models, spatiotemporal and time series models gave similar effect estimates. Time series analyses using temperature recorded from a single monitoring site or average temperature of multiple sites were equally good at estimating the association between temperature and mortality as compared with a spatiotemporal model. A time series Poisson regression model was used to estimate the association between temperature change and mortality in summer in Brisbane, Australia during 1996–2004 and Los Angeles, United States during 1987–2000. Temperature change was calculated by the current day's mean temperature minus the previous day's mean. In Brisbane, a drop of more than 3 �C in temperature between days was associated with relative risks (RRs) of 1.16 (95% confidence interval (CI): 1.02, 1.31) for non-external mortality (NEM), 1.19 (95% CI: 1.00, 1.41) for NEM in females, and 1.44 (95% CI: 1.10, 1.89) for NEM aged 65.74 years. An increase of more than 3 �C was associated with RRs of 1.35 (95% CI: 1.03, 1.77) for cardiovascular mortality and 1.67 (95% CI: 1.15, 2.43) for people aged < 65 years. In Los Angeles, only a drop of more than 3 �C was significantly associated with RRs of 1.13 (95% CI: 1.05, 1.22) for total NEM, 1.25 (95% CI: 1.13, 1.39) for cardiovascular mortality, and 1.25 (95% CI: 1.14, 1.39) for people aged . 75 years. In both cities, there were joint effects of temperature change and mean temperature on NEM. A change in temperature of more than 3 �C, whether positive or negative, has an adverse impact on mortality even after controlling for mean temperature. I examined the variation in the effects of high temperatures on elderly mortality (age . 75 years) by year, city and region for 83 large US cities between 1987 and 2000. High temperature days were defined as two or more consecutive days with temperatures above the 90th percentile for each city during each warm season (May 1 to September 30). The mortality risk for high temperatures was decomposed into: a "main effect" due to high temperatures using a distributed lag non-linear function, and an "added effect" due to consecutive high temperature days. I pooled yearly effects across regions and overall effects at both regional and national levels. The effects of high temperature (both main and added effects) on elderly mortality varied greatly by year, city and region. The years with higher heat-related mortality were often followed by those with relatively lower mortality. Understanding this variability in the effects of high temperatures is important for the development of heat-warning systems. In conclusion, this thesis makes contribution in several aspects. Case-crossover design was combined with distribute lag non-linear model to assess the effects of temperature on mortality in Tianjin. This makes the case-crossover design flexibly estimate the non-linear and delayed effects of temperature. Both extreme cold and high temperatures increased the risk of mortality in Tianjin. Time series model using single site’s temperature or averaged temperature from some sites can be used to examine the effects of temperature on mortality. Temperature change (no matter significant temperature drop or great temperature increase) increases the risk of mortality. The high temperature effect on mortality is highly variable from year to year.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dehydration of food materials requires water removal from it. This removal of moisture prevents the growth and reproduction of microorganisms that cause decay and minimizes many of the moisture-driven deterioration reactions (Brennan, 1994). However, during food drying, many other changes occur simultaneously resulting in a modified overall quality (Kompany et al., 1993). Among the physical attributes of dried food material porosity and microstructure are the important ones that can dominant other quality of dried foods (Aguilera et al., 2000). In addition, this two concerned quality attributes affected by process conditions, material components and raw structure of food stuff. In this work, temperature moisture distribution within food materials during microwave drying will be taken into consideration to observe its participation on the microstructure and porosity of the finished product. Apple is the selective materials for this work. Generally, most of the food materials are found in non-uniformed moisture contained condition. To develop non uniform temperature distribution, food materials have been dried in a microwave oven with different power levels (Chua et al., 2000). First of all, temperature and moisture model is simulated by COMSOL Multiphysics. Later on, digital imaging camera and Image Pro Premier software have been deployed to observation moisture distribution and thermal imaging camera for temperature distribution. Finally, Microstructure and porosity of the food materials are obtained from scanning electron microscope and porosity measuring devices respectively . Moisture distribution and temperature during drying influence the microstructure and porosity significantly. Specially, High temperature and moisture contained regions show less porosity and more rupture. These findings support other literatures of Halder et al. (2011) and Rahman et al (1990). On the other hand, low temperature and moisture regions depict uniform microstructure and high porosity. This work therefore assists in better understanding of the role of moisture and temperature distribution to a prediction of micro structure and porosity of dried food materials.