898 resultados para glutathione peroxide
Resumo:
Cellular thiols are critical moieties in signal transduction, regulation of gene expression, and ultimately are determinants of specific protein activity. Whilst protein bound thiols are the critical effector molecules, low molecular weight thiols, such as glutathione, play a central role in cytoprotection through (1) direct consumption of oxidants, (2) regeneration of protein thiols and (3) export of glutathione containing mixed disulphides. The brain is particularly vulnerable to oxidative stress, as it consumes 20% of oxygen load, contains high concentrations of polyunsaturated fatty acids and iron in certain regions, and expresses low concentrations of enzymic antioxidants. There is substantial evidence for a role for oxidative stress in neurodegenerative disease, where excitotoxic, redox cycling and mitochondrial dysfunction have been postulated to contribute to the enhanced oxidative load. Others have suggested that loss of important trophic factors may underlie neurodegeneration. However, the two are not mutually exclusive; using cell based model systems, low molecular weight antioxidants have been shown to play an important neuroprotective role in vitro, where neurotrophic factors have been suggested to modulate glutathione levels. Glutathione levels are regulated by substrate availability, synthetic enzyme and metabolic enzyme activity, and by the presence of other antioxidants, which according to the redox potential, consume or regenerate GSH from its oxidised partner. Therefore we have investigated the hypothesis that amyloid beta neurotoxicity is mediated by reactive oxygen species, where trophic factor cytoprotection against oxidative stress is achieved through regulation of glutathione levels. Using PC12 cells as a model system, amyloid beta 25-35 caused a shift in DCF fluorescence after four hours in culture. This fluorescence shift was attenuated by both desferioxamine and NGF. After four hours, cellular glutathione levels were depleted by as much as 75%, however, 24 hours following oxidant exposure, glutathione concentration was restored to twice the concentration seen in controls. NGF prevented both the loss of viability seen after 24 hours amyloid beta treatment and also protected glutathione levels. NGF decreased the total cellular glutathione concentration but did not affect expression of GCS. In conclusion, loss of glutathione precedes cell death in PC12 cells. However, at sublethal doses the surviving fraction respond to oxidative stress by increasing glutathione levels, where this is achieved, at least in part, at the gene level through upregulation of GCS. Whilst NGF does protect against oxidative toxicity, this is not achieved through upregulation of GCS or glutathione.
Resumo:
The effects of an experimental model of hydrogen-peroxide-induced foot pad oedema on indices of oxidative damage to biomolecules have been investigated. We have demonstrated increased levels of fluorescent protein and lipid peroxides occurring in plasma at 24 and 48 h post-injection. In addition, a decrease in the degree of galactosylation of IgG was observed which kinetically related the degree of inflammation and to the increase in protein autofluorescence (a specific index of oxidative damage). The effects of ebselen, a novel organoselenium compound which protects against oxidative tissue injury in a glutathione-peroxidase-like manner, have also been examined in this model. Pretreatment of animals with a dose of 50 mg/kg ebselen afforded significant and selective protection against lipid peroxidation only. This effect may contribute to the anti-inflammatory effect of this agent in hydroperoxide-linked tissue damage.
Resumo:
Routine cell line maintenance involves removal of waste products and replenishment of nutrients via replacement of cell culture media. Here, we report that routine maintenance of three discrete cell lines (HSB-CCRF-2 and Jurkat T cells, and phaeo-chromocytoma PC12 cells) decreases the principal cellular antioxidant, glutathione, by up to 42% in HSB-CCRF-2 cells between 60 and 120 min after media replenishment. However, cellular glutathione levels returned to baseline within 5 h after passage. The decrease in glutathione was associated with modulation of the response of Jurkat T cells to apoptotic and mitogenic signals. Methotrexate-induced apoptosis over 16 h, measured as accumulation of apoptotic nucleoids, was decreased from 22 to 17% if cells were exposed to cytotoxic agent 30 min after passage compared with cells exposed to MTX in the absence of passage. In contrast, interleukin-2 (IL-2) production over 24 h in response to the toxin phytohaemagglutinin (PHA), was increased by 34% if cells were challenged 2 h after passage compared with PHA treatment in the absence of passage. This research highlights the presence of a window of time after cell passage of non-adherent cells that may lead to over- or under-estimation of subsequent cell responses to toxins, which is dependent on cellular antioxidant capacity or redox state. © 2007 Elsevier B.V. All rights reserved.
Resumo:
PURPOSE. To assess the level of plasma glutathione in patients with untreated primary open-angle glaucoma. METHODS. Twenty-one patients with newly diagnosed primary open-angle glaucoma and 34 age- and gender-matched control subjects were subjected to a blood analysis to detect the level of circulating glutathione in its reduced and oxidized forms. The effect of age, gender, and systemic blood pressure on circulating glutathione levels was also analyzed. RESULTS. Age had a negative effect on the level of both reduced and total glutathione (P = 0.002, r = -0.52 and P = 0.002, r = -0.52, respectively) in control subjects but not in patients with glaucoma (P > 0.05, r = 0.27, and P > 0.05, r = 0.22, respectively). In the control group, men demonstrated higher levels of both reduced and total glutathione than did women (P = 0.024 and P = 0.032, respectively). After correction for age and gender influences on blood glutathione levels, patients with glaucoma exhibited significantly lower levels of reduced and total glutathione than did control subjects (P = 0.010, F = 7.24 and P = 0.006, F = 8.38, respectively). No differences between study groups were observed in either oxidized glutathione levels or redox index (P > 0.05, F = 0.50; and P > 0.05, F = 0.30, respectively). CONCLUSIONS. Patients with glaucoma exhibit low levels of circulating glutathione, suggesting a general compromise of the antioxidative defense. Copyright © Association for Research in Vision and Ophthalmology.
Resumo:
1. The mechanism of action by which methotrexate (MTX) exerts its anti-inflammatory and immunosuppressive effects remains unclear. The aim of this study is to investigate the hypothesis that MTX exerts these effects via the production of reactive oxygen species (ROS). 2. Addition of MTX (100 nM-10 μM) to U937 monocytes induced a time and dose dependent increase in cytosolic peroxide [peroxide] cyt from 6-16 h. MTX also caused corresponding monocyte growth arrest, which was inhibited (P<0.05) by pre-treatment with N-acetylcysteine (NAC; 10 mM) or glutathione (GSH; 10 mM). In contrast, MTX induction of [peroxide] cyt in Jurkat T cells was more rapid (4 h; P<0.05), but was associated with significant apoptosis at 16 h at all doses tested (P<0.05) and was significantly inhibited by NAC or GSH (P<0.05). 3. MTX treatment of monocytes (10 nM-10 μM) for 16 h significantly reduced total GSH levels (P<0.05) independently of dose (P>0.05). However in T-cells, GSH levels were significantly elevated following 30 nM MTX treatment (P<0.05) but reduced by doses exceeding 1 μM compared to controls (P<0.05). 4. MTX treatment significantly reduced monocyte adhesion to 5 h and 24 h LPS (1 μg ml -1) activated human umbilical vein endothelial cells (HUVEC; P<0.05) but not to resting HUVEC. Pre-treatment with GSH prevented MTX-induced reduction in adhesion. 5. In conclusion, ROS generation by MTX is important for cytostasis in monocytes and cytotoxicity T-cells. Furthermore, MTX caused a reduction in monocyte adhesion to endothelial cells, where the mechanism of MTX action requires the production of ROS. Therefore its clinical efficacy can be attributed to multiple targets.
Resumo:
Reactive oxygen species (ROS) and ceramide are each partly responsible for the signal transduction of a variety of extracellular agents. Furthermore, the application of synthetic, short-chain ceramides mimics the cellular responses to these extracellular agents. However, the significance of ROS involvement in ceramide signaling pathways is poorly understood. Here we describe that the (cellular responses to C2-/C6-ceramide of growth arrest in U937 monocytes and apoptosis in Jurkat T-cells are preceded by a rise in mitochondrial peroxide production. In Jurkat T-cells, this is associated with a large time- and dose-dependent loss of cellular glutathione. However, in U937 monocytes, glutathione loss is transient. Differences in the magnitude and kinetics of this alteration in cellular redox state associate with discrete outcomes, namely growth arrest or apoptosis. © 2002 Elsevier Science (USA). All rights reserved.
Resumo:
Purpose. To assess the relationship between macular pigment optical density (MPOD) and blood markers for antioxidant defense in otherwise healthy volunteers. Methods. Forty-seven healthy volunteers were subjected to blood analysis to detect the level of circulating glutathione in its reduced (GSH) and oxidized (GSSG) forms. The level of MPOD was measured using heterochromatic flicker photometry. Systemic blood pressure (BP) parameters, heart rate (HR), body mass index (BMI), and plasma levels of total, HDL, and LDL cholesterol and triglycerides (TGs) were also determined. Results. A simple correlation model revealed that the level of MPOD correlated significantly and positively with both GSH (P < 0.001) and t-GSH (P < 0.001) levels but not with those of GSSG (P > 0.05). Age, sex, systemic BP parameters, HR, BMI, and plasma levels of cholesterol and TGs did not have any influence on either MPOD or glutathione levels (all P > 0.05). In addition, a forward stepwise multiple regression analysis showed MPOD to have a significantly and independent correlation with GSH levels (ß = 0.63; P < 0.001). Conclusions. In otherwise healthy older individuals, there is a positive correlation between local and systemic antioxidant defense mechanisms.
Resumo:
A series of antioxidants was used to explore the cytotoxicity of one particularly toxic antimycobacterial 2-pyridylcarboxamidrazone anti-tuberculosis agent against human mononuclear leucocytes (MNL), in comparison with isoniazid (INH) to aid future compound design. INH caused a significant reduction of nearly 40% in cell recovery compared with control (P < 0.0001), although the co-incubation with either glutathione (GSH, 1 mM) or (NAC, 1 mM) showed abolition of INH toxicity. In contrast, the addition of GSH or NAC 1 h after INH failed to protect the cells from INH toxicity (P < 0.0001). The 2-pyridyl-carboxamidrazone 'Compound 1' caused a 50% reduction in cell recovery compared with control (P < 0.001), although this was abolished by the presence of either GSH or NAC. A 1 h post incubation with either NAC or GSH after Compound 1 addition failed to protect the cells from toxicity (P < 0.001). Co-administration of lipoic acid (LA) abolished Compound 1-mediated toxicity, although again, this effect did not occur after LA addition 1 h post incubation with Compound 1 (P < 0.001). However, co-administration of dihydrolipoic acid (DHLA) prevented Compound 1-mediated cell death when incubated with the compound and also after 1 h of Compound 1 alone. Pre-treatment with GSH, then removal of the antioxidant resulted in abolition of Compound 1 toxicity (vehicle control, 63.6 ± 16.7 versus Compound 1 alone 26.1 ± 13.6% versus GSH pre-treatment, 65.7 ± 7.3%). In a cell-free incubation, NMR analysis revealed that GSH does not react with Compound 1, indicating that this agent is not likely to directly deplete membrane thiols. Compound 1's MNL toxicity is more likely to be linked with changes in cell membrane conformation, which may induce consequent thiol depletion that is reversible by exogenous thiols. © 2004 Elsevier B.V. All rights reserved.
Resumo:
The PC12 and SH-SY5Y cell models have been proposed as potentially realistic models to investigate neuronal cell toxicity. The effects of oxidative stress (OS) caused by both H2O2 and Aβ on both cell models were assessed by several methods. Cell toxicity was quantitated by measuring cell viability using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) viability assay, an indicator of the integrity of the electron transfer chain (ETC), and cell morphology by fluorescence and video microscopy, both of which showed OS to cause decreased viability and changes in morphology. Levels of intracellular peroxide production, and changes in glutathione and carbonyl levels were also assessed, which showed OS to cause increases in intracellular peroxide production, glutathione and carbonyl levels. Differentiated SH-SY5y cells were also employed and observed to exhibit the greatest sensitivity to toxicity. The neurotrophic factor, nerve growth factor (NGF) was shown to cause protection against OS. Cells pre-treated with NGF showed higher viability after OS, generally less apoptotic morphology, recorded less apoptotic nucleiods, generally lower levels of intracellular peroxides and changes in gene expression. The neutrophic factor, brain derived growth factor (BDNF) and ascorbic acid (AA) were also investigated. BDNF showed no specific neuroprotection, however the preliminary data does warrant further investigation. AA showed a 'janus face' showing either anti-oxidant action and neuroprotection or pro-oxidant action depending on the situation. Results showed that the toxic effects of compounds such as Aβ and H2O2 are cell type dependent, and that OS alters glutathione metabolism in neuronal cells. Following toxic insult, glutathione levels are depleted to low levels. It is herein suggested that this lowering triggers an adaptive response causing alterations in glutathione metabolism as assessed by evaluation of glutathione mRNA biosynthetic enzyme expression and the subsequent increase in glutathione peroxidase (GPX) levels.
A copper-hydrogen peroxide redox system induces dityrosine cross-links and chemokine oligomerisation
Resumo:
The activity of the chemoattractant cytokines, the chemokines, in vivo is enhanced by oligomerisation and aggregation on glycosaminoglycan (GAG), particularly heparan sulphate, side chains of proteoglycans. The chemokine RANTES (CCL5) is a T-lymphocyte and monocyte chemoattractant, which has a minimum tetrameric structure for in vivo activity and a propensity to form higher order oligomers. RANTES is unusual among the chemokines in having five tyrosine residues, an amino acid susceptible to oxidative cross-linking. Using fluorescence emission spectroscopy, Western blot analysis and LCMS-MS, we show that a copper/H2O2 redox system induces the formation of covalent dityrosine cross-links and RANTES oligomerisation with the formation of tetramers, as well as higher order oligomers. Amongst the transition metals tested, namely copper, nickel, mercury, iron and zinc, copper appeared unique in this respect. At high (400 µM) concentrations of H2O2, RANTES monomers, dimers and oligomers are destroyed, but heparan sulphate protects the chemokine from oxidative damage, promoting dityrosine cross-links and multimer formation under oxidative conditions. Low levels of dityrosine cross-links were detected in copper/H2O2-treated IL-8 (CXCL8), which has one tyrosine residue, and none were detected in ENA-78 (CXCL5), which has none. Redox-treated RANTES was fully functional in Boyden chamber assays of T-cell migration and receptor usage on activated T-cells following RANTES oligomerisation was not altered. Our results point to a protective, anti-oxidant, role for heparan sulphate and a previously unrecognised role for copper in chemokine oligomerisation that may offer an explanation for the known anti-inflammatory effect of copper-chelators such as penicillamine and tobramycin.
Resumo:
Sodium hypochlorite and sodium chlorite are commonly used as disinfectants, and understanding the mechanisms of microbial resistance to these compounds is of considerable importance. In this study, the role of oxidative stress and antioxidant enzymes in the sensitivity of the yeast Saccharomyces cerevisiae to hypochlorite and chlorite was studied. Yeast mutants lacking Cu-Zn superoxide dismutase, but not mutants deficient in cytoplasmic and peroxisomal catalase, were hypersensitive to the action of both hypochlorite and chlorite. Both compounds depleted cellular glutathione, induced the production of reactive oxygen species and decreased the viability of the cells. The toxicity of hypochlorite and chlorite was abolished by hypoxic and anoxic conditions and ameliorated by thiol antioxidants and ascorbate. The results demonstrated that the action of hypochlorite and chlorite involves the formation of superoxide and peroxide and that SOD1 is protective, probably by limiting the formation of hydroxyl radicals and damage to proteins.
Protein-mediated isolation of plasmid DNA by a zinc finger-glutathione S-transferase affinity linker
Resumo:
The sequence-specific affinity chromatographic isolation of plasmid DNA from crude lysates of E. coli DH5α fermentations is addressed. A zinc finger-GST fusion protein that binds a synthetic oligonucleotide cassette containing the appropriate DNA recognition sequence is described. This cassette was inserted into the Smal site of pUC19 to enable the affinity isolation of the plasmid. It is shown that zinc finger-GST fusion proteins can bind both their DNA recognition sequence and a glutathione-derivatized solid support simultaneously. Furthermore, a simple procedure for the isolation of such plasmids from clarified cell lysates is demonstrated. Cell lysates were clarified by cross-flow Dean vortex microfiltration, and the permeate was incubated with zinc finger-GST fusion protein. The resulting complex was adsorbed directly onto glutathione-Sepharose. Analysis of the glutathione-eluted complex showed that plasmid DNA had been recovered, largely free from contamination by genomic DNA or bacterial cell proteins. © 2002 Wiley Periodicals, Inc.
Resumo:
PURPOSE. To investigate in parallel the systemic glutathione levels of patients suffering from primary open angle glaucoma (POAG) or normal tension glaucoma (NTG) with comparable functional loss. METHODS. Thirty-four POAG patients, 30 NTG patients, and 53 controls were subjected to blood analysis to detect the level of circulating glutathione in its reduced (GSH) and oxidized (GSSG) forms. Systemic blood pressure (BP) and ocular perfusion pressure (OPP) parameters were also determined. RESULTS. Independent of age, POAG and NTG patients demonstrated significantly lower GSH and t-GSH levels than age-matched controls (P < 0.001). Additionally, a lower redox index was found, but in POAG patients only, in comparison to both NTG and control groups (P = 0.020). GSSG levels were, however, similar between all study groups (P > 0.05). CONCLUSIONS. This study demonstrates, for the first time, that both POAG and NTG patients exhibit lower GSH and t-GSH levels than age-matched controls, indicating a similar general compromise of the antioxidant defense systems may exist in both conditions. © 2013 The Association for Research in Vision and Ophthalmology, Inc.