855 resultados para glucose infusion
Resumo:
Glucose 6-phosphate dehydrogenase (G6PDH) catalyzes the first step of the pentose-phosphate pathway which supplies cells with ribose 5-phosphate (R5P) and NADPH. R5P is the precursor for the biosynthesis of nucleotides while NADPH is the cofactor of several dehydrogenases acting in a broad range of biosynthetic processes and in the maintenance of the cellular redox state. RNA interference-mediated reduction of G6PDH levels in bloodstream-form Trypanosoma brucei validated this enzyme as a drug target against Human African Trypanosomiasis. Dehydroepiandrosterone (DHEA), a human steroidal pro-hormone and its derivative 16 alpha-bromoepiandrosterone (16BrEA) are uncompetitive inhibitors of mammalian G6PDH. Such steroids are also known to enhance the immune response in a broad range of animal infection models. It is noteworthy that the administration of DHEA to rats infected by Trypanosoma cruzi, the causative agent of Human American Trypanosomiasis (also known as Chagas` disease), reduces blood parasite levels at both acute and chronic infection stages. In the present work, we investigated the in vitro effect of DHEA derivatives on the proliferation of T. cruzi epimastigotes and their inhibitory effect on a recombinant form of the parasite`s G6PDH (TcG6PDH). Our results show that DHEA and its derivative epiandrosterone (EA) are uncompetitive inhibitors of TcG6PDH, with K(i) values of 21.5 +/- 0.5 and 4.8 +/- 0.3 mu M, respectively. Results from quantitative inhibition assays indicate 16BrEA as a potent inhibitor of TcG6PDH with an IC(50) of 86 +/- 8 nM and those from in vitro cell viability assays confirm its toxicity for T. cruzi epimastigotes, with a LD(50) of 12 +/- 8 mu M. In summary, we demonstrated that, in addition to host immune response enhancement, 16BrEA has a direct effect on parasite viability, most likely as a consequence of TcG6PDH inhibition. Crown Copyright (C) 2010 Published by Elsevier Ltd. All rights reserved.
Resumo:
Trypanosoma cruzi, the agent of Chagas` disease, alternates between different morphogenetic stages that face distinct physiological conditions in their invertebrate and vertebrate hosts, likely in the availability of glucose. While the glucose transport is well characterized in epimastigotes of T cruzi, nothing is known about how the mammalian stages acquire this molecule. Herein glucose transport activity and expression were analyzed in the three developmental stages present in the vertebrate cycle of T cruzi. The infective trypomastigotes showed the highest transport activity (V(max) = 5.34 +/- 0.54 nmol/min per mg of protein: K(m) = 0.38 +/- 0.01 mM) when compared to intracellular epimastigotes (V(max) = 2.18 +/- 0.20 nmol/min per mg of protein; K(m) = 0.39 +/- 0.01 mM). Under the conditions employed no transport activity could be detected in amastigotes. The gene of the glucose transporter is expressed at the mRNA level in trypomastigotes and in intracellular epimastigotes but not in amastigotes, as revealed by real-time PCR. In both trypomastigotes and intracellular epimastigotes protein expression could be detected by Western blot with an antibody raised against the glucose transporter correlating well with the transport activity measured experimentally. Interestingly, anti-glucose transporter antibodies showed a strong reactivity with glycosome and reservosome organelles. A comparison between proline and glucose transport among the intracellular differentiation forms is presented. The data suggest that the regulation of glucose transporter reflects different energy and carbon requirements along the intracellular life cycle of T cruzi. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Transplantation of pancreatic islets is efficient in improving the metabolic control and quality of life and in preventing severe hypoglycemia in patients with brittle type I diabetes mellitus. More accurate methods to assess islet viability would be extremely useful in designing target interventions for islet cytoprorection and in reducing the number of islets required to achieve insulin independence. Here we report on an application of calorimetry to evaluate the metabolic response of pancreatic islets to glucose stimulation. A significant increase in metabolic heat was produced by islet samples when consecutively subjected to 2.8 and 16.3 mmol L-1 glucose. Under these glucose concentrations, 1000 islets released average heat values of 9.16 +/- 0.71 mJ and 14.90 +/- 1.21 mJ over 50 min, respectively. Additionally, the glucose stimulation indexes were 1.67 +/- 0.30 for insulin. 1.72 +/- 0.13 for heat and 2.91 +/- 0.50 for lactate, raising the important possibility of substituting the secreted insulin index/ratio by the index/ratio of the heat released in the evaluation of Langerhans islets viability for transplantation. Altogether, Our results demonstrate the applicability of calorimetry to assess the quality of isolated pancreatic islets and to study vital islet functions. (c) 2008 Published by Elsevier B.V.
Resumo:
Glucose modulates plant metabolism, growth, and development. In Arabidopsis (Arabidopsis thaliana), Hexokinase1 (HXK1) is a glucose sensor that may trigger abscisic acid (ABA) synthesis and sensitivity to mediate glucose-induced inhibition of seedling development. Here, we show that the intensity of short-term responses to glucose can vary with ABA activity. We report that the transient (2 h/4 h) repression by 2% glucose of AtbZIP63, a gene encoding a basic-leucine zipper (bZIP) transcription factor partially involved in the Snf1-related kinase KIN10-induced responses to energy limitation, is independent of HXK1 and is not mediated by changes in ABA levels. However, high-concentration (6%) glucose-mediated repression appears to be modulated by ABA, since full repression of AtbZIP63 requires a functional ABA biosynthetic pathway. Furthermore, the combination of glucose and ABA was able to trigger a synergistic repression of AtbZIP63 and its homologue AtbZIP3, revealing a shared regulatory feature consisting of the modulation of glucose sensitivity by ABA. The synergistic regulation of AtbZIP63 was not reproduced by an AtbZIP63 promoter-5`-untranslated region:beta-glucuronidase fusion, thus suggesting possible posttranscriptional control. A transcriptional inhibition assay with cordycepin provided further evidence for the regulation of mRNA decay in response to glucose plus ABA. Overall, these results indicate that AtbZIP63 is an important node of the glucose-ABA interaction network. The mechanisms by which AtbZIP63 may participate in the fine-tuning of ABA-mediated abiotic stress responses according to sugar availability (i.e., energy status) are discussed.
Resumo:
Calorie restriction is a dietary intervention known to improve redox state, glucose tolerance, and animal life span. Other interventions have been adopted as study models for caloric restriction, including nonsupplemented food restriction and intermittent, every-other-day feedings. We compared the short- and long-term effects of these interventions to ad libitum protocols and found that, although all restricted diets decrease body weight, intermittent feeding did not decrease intra-abdominal adiposity. Short-term calorie restriction and intermittent feeding presented similar results relative to glucose tolerance. Surprisingly, long-term intermittent feeding promoted glucose intolerance, without a loss in insulin receptor phosphorylation. Intermittent feeding substantially increased insulin receptor nitration in both intra-abdominal adipose tissue and muscle, a modification associated with receptor inactivation. All restricted diets enhanced nitric oxide synthase levels in the insulin-responsive adipose tissue and skeletal muscle. However, whereas calorie restriction improved tissue redox state, food restriction and intermittent feedings did not. In fact, long-term intermittent feeding resulted in largely enhanced tissue release of oxidants. Overall, our results show that restricted diets are significantly different in their effects on glucose tolerance and redox state when adopted long-term. Furthermore, we show that intermittent feeding can lead to oxidative insulin receptor inactivation and glucose intolerance. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
A novel biosensor for glucose was prepared by adsorption of 1,1`-bis(4-carboxybenzyl)-4,4`-bipyridinium di-bromide compound (H(2)BpybcBr(2)) onto the surface of a nanocrystalline TiO(2) film deposited onto FTO glasses, which was used as a platform to assemble the enzyme glucose oxidase to the electrode surface. The H(2)BpybcBr(2)/TiO(2)/FTO modified electrode was characterized by scanning electron microscopy, X-ray fluorescence image, cyclic voltammograms and spectroelectrochemical measurements. The immobilization of GOD on functionalized TiO(2) film led to stable amperometric biosensing for glucose with a linear range from 153 mu mol L(-1) to 1.30 mmol L(-1) and a detection limit of 51 mu mol L(-1). The apparent Michaelis-Menten constant (K(m)) was estimated to be 3.76 mmol L(-1), which suggested a high enzyme-substrate affinity. The maximum electrode sensitivity was 1.25 mu A mmol L(-1). The study proved that the combination of viologen mediators with TiO(2) film retains the electrocatalytic activity of the enzyme, and also enhances the electron transfer process, and hence regenerating the enzyme in the reaction with glucose. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
A carbon micro/nanostructured composite based on cup-stacked carbon nanotubes (CSCNTs) grown onto a carbon felt has been found to be an efficient matrix for enzyme immobilization and chemical signal transduction. The obtained CSCNT/felt was modified with a copper hexacyanoferrate/polypyrrole (CuHCNFe/Ppy) hybrid mediator, and the resulting composite electrode was applied to H(2)O(2) detection, achieving a sensitivity of 194 +/- 15 mu A mmol(-1) L. The results showed that the CSCNT/felt matrix significantly increased the sensitivity of CuHCNFe/Ppy-based sensors compared to those prepared on a felt unrecovered by CSCNTs. Our data revealed that the improved sensitivity of the as-prepared CuHCNFe/Ppy-CSCNT/felt composite electrode can be attributed to the electronic interactions taking place among the CuHCNFe nanocrystals, Ppy layer and CSCNTs. In addition, the presence of CSCNTs also seemed to favor the dispersion of CuHCNFe nanocrystals over the Ppy matrix, even though the CSCNTs were buried under the conducting polymer layer. The CSCNT/felt matrix also enabled the preparation of a glucose biosensor whose sensitivity could be tuned as a function of the number of glucose oxidase (GOx) layers deposited through a Layer-by-Layer technique with an sensitivity of 11 +/- 2 mu A mmol(-1) L achieved at 15 poly(diallyldimethylammoniumchloride)/GOx bilayers. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The bioelectrochemical behavior of three triphenylmethane (TPM) dyes commonly used as pH indicators, and their application in mediated electron transfer systems for glucose oxidase bioanodes in biofuel cells was investigated. Bromophenol Blue, Bromothymol Blue, Bromocresol Green were compared bio-electrochemically against two widely used mediators, benzoquinone and ferrocene carboxy aldehyde. Biochemical studies were performed in terms of enzymatic oxidation, enzyme affinity, catalytic efficiency and co-factor regeneration. The different features of the TPM dyes as mediators are determined by the characteristics in the oxidation/reduction processes studied electrochemically. The reversibility of the oxidation/reduction processes was also established through the dependence of the voltammetric peaks with the sweep rates. All three dyes showed good performances compared to the FA and BQ when evaluated in a half enzymatic fuel cell. Potentiodynamic and power response experiments showed maxima power densities of 32.8 mu W cm(-2) for ferrocene carboxy aldehyde followed by similar values obtained for TPM dyes around 30 mu W cm(-2) using glucose and mediator concentrations of 10 mmol L(-1) and 1.0 mmol L(-1), respectively. Since no mediator consumption was observed during the bioelectrochemical process, and also good redox re-cycled processes were achieved, the use of triphenylmethane dyes is considered to be promising compared to other mediated systems used with glucose oxiclase bioanodes and/or biofuel cells. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
The aim of this work is to evaluate the fuzzy system for different types of patients for levodopa infusion in Parkinson Disease based on simulation experiments using the pharmacokinetic-pharmacodynamic model. Fuzzy system is to control patient’s condition by adjusting the value of flow rate, and it must be effective on three types of patients, there are three different types of patients, including sensitive, typical and tolerant patient; the sensitive patients are very sensitive to drug dosage, but the tolerant patients are resistant to drug dose, so it is important for controller to deal with dose increment and decrement to adapt different types of patients, such as sensitive and tolerant patients. Using the fuzzy system, three different types of patients can get useful control for simulating medication treatment, and controller will get good effect for patients, when the initial flow rate of infusion is in the small range of the approximate optimal value for the current patient’ type.
Resumo:
Objectives:To find variables correlated to improvement with intraduodenal levodopa/carbidopa infusion (Duodopa) in order to identify potential candidates for this treatment. Two clinical studies comparing Duodopa with oral treatments in patients with advanced Parkinson’s disease have shown significant improvement in percent on-time on a global treatment response scale (TRS) based on hourly and half-hourly clinical ratings and in median UPDRS scores.Methods:Data from study 1 comparing infusion with Sinemet CR (12 patients, Nyholm et al, Clin Neuropharmacol 2003; 26(3): 156-163) and study 2 comparing infusion with individually optimised conventional combination therapies (18 patients, Nyholm et al, Neurology, in press) were used. Measures of severity were defined as total UPDRS score and scores for sections II and III, percent functional on-time and mean squared error of ratings on the TRS and as mean of diary questions about mobility and satisfaction (only study 2). Absolute improvement was defined as difference in severity, and relative improvement was defined as percent absolute improvement/severity on oral treatment. Pearson correlation coefficients between measures of improvement and other variables were calculated.Results:Correlations (r2>0.28, p<0.05) between severity during oral treatment and absolute improvement on infusion were found for: Total UPDRS, UPDRS III and TRS ratings (studies 1 and 2) and for diary question 1 (mobility) and UPDRS II (study 2). Correlation to relative improvement was found for total UPDRS (study 2, r2=0.47). Figure 1 illustrates absolute improvement in total UPDRS vs. total UPDRS during oral treatment (study 2).Conclusion:Correlating different measures of severity and improvement revealed that patients with more severe symptoms were most improved and that the relation between severity and improvement was linear within the studied groups. The result, which was reproducible between two clinical studies, could be useful when deciding candidates for the treatment.
Resumo:
Objective: We present a new evaluation of levodopa plasma concentrations and clinical effects during duodenal infusion of a levodopa/carbidopa gel (Duodopa ) in 12 patients with advanced Parkinson s disease (PD), from a study reported previously (Nyholm et al, Clin Neuropharmacol 2003; 26(3): 156-163). One objective was to investigate in what state of PD we can see the greatest benefits with infusion compared with corresponding oral treatment (Sinemet CR). Another objective was to identify fluctuating response to levodopa and correlate to variables related to disease progression. Methods: We have computed mean absolute error (MAE) and mean squared error (MSE) for the clinical rating from -3 (severe parkinsonism) to +3 (severe dyskinesia) as measures of the clinical state over the treatment periods of the study. Standard deviation (SD) of the rating was used as a measure of response fluctuations. Linear regression and visual inspection of graphs were used to estimate relationships between these measures and variables related to disease progression such as years on levodopa (YLD) or unified PD rating scale part II (UPDRS II).Results: We found that MAE for infusion had a strong linear correlation to YLD (r2=0.80) while the corresponding relation for oral treatment looked more sigmoid, particularly for the more advanced patients (YLD>18).
Resumo:
Objective Levodopa in presence of decarboxylase inhibitors is following two-compartment kinetics and its effect is typically modelled using sigmoid Emax models. Pharmacokinetic modelling of the absorption phase of oral distributions is problematic because of irregular gastric emptying. The purpose of this work was to identify and estimate a population pharmacokinetic- pharmacodynamic model for duodenal infusion of levodopa/carbidopa (Duodopa®) that can be used for in numero simulation of treatment strategies. Methods The modelling involved pooling data from two studies and fixing some parameters to values found in literature (Chan et al. J Pharmacokinet Pharmacodyn. 2005 Aug;32(3-4):307-31). The first study involved 12 patients on 3 occasions and is described in Nyholm et al. Clinical Neuropharmacology 2003:26:156-63. The second study, PEDAL, involved 3 patients on 2 occasions. A bolus dose (normal morning dose plus 50%) was given after a washout during night. Plasma samples and motor ratings (clinical assessment of motor function from video recordings on a treatment response scale between -3 and 3, where -3 represents severe parkinsonism and 3 represents severe dyskinesia.) were repeatedly collected until the clinical effect was back at baseline. At this point, the usual infusion rate was started and sampling continued for another two hours. Different structural absorption models and effect models were evaluated using the value of the objective function in the NONMEM package. Population mean parameter values, standard error of estimates (SE) and if possible, interindividual/interoccasion variability (IIV/IOV) were estimated. Results Our results indicate that Duodopa absorption can be modelled with an absorption compartment with an added bioavailability fraction and a lag time. The most successful effect model was of sigmoid Emax type with a steep Hill coefficient and an effect compartment delay. Estimated parameter values are presented in the table. Conclusions The absorption and effect models were reasonably successful in fitting observed data and can be used in simulation experiments.
Resumo:
A novel test battery consisting of self-assessments and motor tests (tapping and spiral drawing) for patients with Parkinson’s disease (PD) was developed for a hand computer with touch screen in a telemedicine setting. Tests are performed four times per day in the home environment during weeklong test periods. Results are processed into scores for different dimensions of the symptom state and an ‘overall score’ reflecting the global condition of a patient during a test period. The test battery was validated in a separate study recently submitted to Mov Disord. This test battery is currently being used in an open longitudinal trial (DAPHNE, EudraCT No. 2005- 002654-21) by sixty-five patients with advanced PD at nine clinics around Sweden. On inclusion, the patients were either receiving treatment with duodenal levodopa/carbidopa infusion (Duodopa®) (n=36), or they were candidates for receiving this treatment (n=29). We now present interim results for the first twelve months. Test periods were performed in three-month intervals. During most of the periods, UPDRS ratings were performed in afternoons at the start of the week. In twenty of the patients, scores were available during individually optimized oral polypharamacy, before receiving infusion and at least one test period after having started infusion treatment. Usability and compliance with performing tests, this far are good, both with patients and clinical staff. Correlations between test periods 2 and 3 during infusion treatment (three months apart) are stronger for overall test score than for total UPDRS, indicating good reliability. The correlation between overall test score and UPDRS for all test periods is adequate (r=-0.6). In an exact Wilcoxon signed rank test, where the endpoint is the change from the first to the twelve month test period (n=25), there was no change in test results in any of the test battery dimensions for the patients already receiving infusion when included. However, in the patients entering the study before receiving infusion, there was a significant change (improvement) from the baseline to the twelve month test period in dimensions; ‘off’, ‘dyskinesia’ and ‘satisfied’ and in the ‘overall score’ (n=15). The mean improvement in overall score after infusion was 29% (p=0.015). We conclude that the test battery is able to measure a functional improvement with infusion that is sustained over at least twelve months.
Resumo:
Objective To investigate if a home environment test battery can be used to measure effects of Parkinson’s disease (PD) treatment intervention and disease progression. Background Seventy-seven patients diagnosed with advanced PD were recruited in an open longitudinal 36-month study at 10 clinics in Sweden and Norway; 40 of them were treated with levodopa-carbidopa intestinal gel (LCIG) and 37 patients were candidates for switching from oral PD treatment to LCIG. They utilized a mobile device test battery, consisting of self-assessments of symptoms and objective measures of motor function through a set of fine motor tests (tapping and spiral drawings), in their homes. Both the LCIG-naïve and LCIG-non-naïve patients used the test battery four times per day during week-long test periods. Methods Assessments The LCIG-naïve patients used the test battery at baseline (before LCIG), month 0 (first visit; at least 3 months after intraduodenal LCIG), and thereafter quarterly for the first year and biannually for the second and third years. The LCIG-non-naïve patients used the test battery from the first visit, i.e. month 0. Out of the 77 patients, only 65 utilized the test battery; 35 were LCIG-non-naïve and 30 LCIG-naïve. In 20 of the LCIG-naïve patients, assessments with the test battery were available during oral treatment and at least one test period after having started infusion treatment. Three LCIG-naïve patients did not use the test battery at baseline but had at least one test period of assessments thereafter. Hence, n=23 in the LCIG-naïve group. In total, symptom assessments in the full sample (including both patient groups) were collected during 379 test periods and 10079 test occasions. For 369 of these test periods, clinical assessments including UPDRS and PDQ-39 were performed in afternoons at the start of the test periods. The repeated measurements of the test battery were processed and summarized into scores representing patients’ symptom severities over a test period, using statistical methods. Six conceptual dimensions were defined; four subjectively-reported: ‘walking’, ‘satisfied’, ‘dyskinesia’, and ‘off’ and two objectively-measured: ‘tapping’ and ‘spiral’. In addition, an ‘overall test score’ (OTS) was defined to represent the global health condition of the patient during a test period. Statistical methods Change in the test battery scores over time, that is at baseline and follow-up test periods, was assessed with linear mixed-effects models with patient ID as a random effect and test period as a fixed effect of interest. The within-patient variability of OTS was assessed using intra-class correlation coefficient (ICC), for the two patient groups. Correlations between clinical rating scores and test battery scores were assessed using Spearman’s rank correlations (rho). Results In LCIG-naïve patients, mean OTS compared to baseline was significantly improved from the first test period on LCIG treatment until month 24. However, there were no significant changes in mean OTS scores of LCIG-non-naïve patients, except for worse mean OTS at month 36 (p<0.01, n=16). The mean scores of all subjectively-reported dimensions improved significantly throughout the course of the study, except ‘walking’ at month 36 (p=0.41, n=4). However, there were no significant differences in mean scores of objectively-measured dimensions between baseline and other test periods, except improved ‘tapping’ at month 6 and month 36, and ‘spiral’ at month 3 (p<0.05). The LCIG-naïve patients had a higher within-subject variability in their OTS scores (ICC=0.67) compared to LCIG-non-naïve patients (ICC=0.71). The OTS correlated adequately with total UPDRS (rho=0.59) and total PDQ-39 (rho=0.59). Conclusions In this 3-year follow-up study of advanced PD patients treated with LCIG we found that it is possible to monitor PD progression over time using a home environment test battery. The significant improvements in the mean OTS scores indicate that the test battery is able to measure functional improvement with LCIG sustained over at least 24 months.