947 resultados para fuel cell, membrane, proton conducting
Resumo:
This work reports a review on the status and technical feasibility of the application of ethanol as fuel for Solid Oxide Fuel Cells (SOFC), presenting both external reform and cell with direct utilization of ethanol. Based on this survey, both experimental results and mathematical modeling indicated the technical feasibility of power generation by ethanol SOFC, with cell units producing 450 mW/cm², sufficient for scale up to large stationary plants. The quantitative assessments in the literature show this field to be promising for researchers and private sector investment as well being a strategic technology for government policy in the short and long term.
Resumo:
The carcinogenic potential of carbendazim and its metabolites was analyzed using statistical treatment of electronic parameters obtained from DFT/ 6-311++G(d,p) and AM1 calculations. The carcinogen-DNA interaction is described in the framework of the theory of unsynchronized resonance of covalent bond as a process of electron transfer involving the HOMO and LUMO frontier orbitals. Through a Principal Component Analysis (PCA) of the electron affinity, carcinogen-DNA interaction energy, electrostatic attraction and cell membrane permeability (dipole moment m and partition coefficient LogP) evidence was obtained showing carbendazim displays carcinogenic activity. For the metabolites of carbendazim, no evidence was found in the literature of their carcinogenic activities. However, the electronic parameters for these metabolites exhibited similarity to known carcinogens, thereby showing the importance of the results obtained in this study for a policy based on the precautionary principle.
Resumo:
Polttokennojen, erityisesti SOFC-kennojen, tutkimuksessa on viime vuosina saavutettu merkittäviä edistysaskelia ja mahdollisuudet kennojen laajamittaiseen hyödyntämiseen paranevat koko ajan. Polttokennojen yleistyessä tarvitaan tehoelektroniikkaa muokkaamaan kennojen tasajännite verkkoon sopivaksi vaihtojännitteeksi. Verkkovaihtosuuntaaja vaatii korkeamman jännitetason, kuin polttokennosta on saatavissa, joten tasajännitetasoa on ensin nostettava. Tässä diplomityössä esitellään kolme eri hakkuritopologiaa ja perehdytään kokosiltahakkurin optimointiin. Hakkurin pääasialliset häviölähteet olivat toision diodisilta ja transistorit. Diodien vaihtaminen piidiodeista piikarbididiodeihin ei parantanut hyötysuhdetta, koska toision jännite tarkastellussa sovelluksessa oli matala. Muuntajan käämiminen litz-johtimella paransi hyötysuhdetta merkittävästi.
Resumo:
Integrins are heterodimeric cell adhesion receptors involved in cell-cell and cell-extracellular matrix (ECM) interactions. They transmit bidirectional signals across the cell membrane. This results in a wide range of biological events from cell differentiation to apoptosis. alpha2beta1 integrin is an abundant collagen receptor expressed on the surface of several cell types. In addition to ECM ligands, alpha2beta1 integrins are bound by echovirus 1 (EV1) which uses alpha2beta1 as a receptor to initiate its life cycle in the infected cell. The aim of this thesis project was to provide further insight into the mechanisms of alpha2beta1 integrin ligand recognition and receptor activation. Collagen fibrils are the principal tensile elements of the ECM. Yet, the interaction of alpha2beta1 integrin with the fibrillar form of collagen I has received relatively little attention. This research focused on the ability of alpha2beta1 integrin to act as a receptor for type I collagen fibrils. Also the molecular requirements of the EV1 interaction with alpha2beta1 were studied. Conventionally, ligand binding has been suggested to require integrin activation and the binding may further trigger integrin signalling. Another main objective of this study was to elucidate both the inside-out and outside-in signalling mechanisms of alpha2beta1 integrin in adherent cells. The results indicated that alpha2beta1 integrin is the principal integrin-type collagen receptor for type I collagen fibrils, and alpha2beta1 may participate in the regulation of pericellular collagen fibrillogenesis. Furthermore, alpha2beta1 integrin inside-out activation appeared to be synergistically regulated by integrin clustering and conformational activation. The triggering of alpha2beta1 integrin outside-in signalling, however, was shown to require both conformational changes and clustering. In contrast to ECM ligands, EV1 appeared to take advantage of the bent, inactive form of alpha2beta1 integrin in initiating its life cycle in the cell. This research together with other recent studies, has shed light on the molecular mechanisms of integrin activation. It is becoming evident that large ligands are able to bind to the bent form of integrin, which has been previously considered to be physiologically inactive. Consequently, our understanding of the conformational modulation of integrins upon activation is changing.
Resumo:
The maximum realizable power throughput of power electronic converters may be limited or constrained by technical or economical considerations. One solution to this problemis to connect several power converter units in parallel. The parallel connection can be used to increase the current carrying capacity of the overall system beyond the ratings of individual power converter units. Thus, it is possible to use several lower-power converter units, produced in large quantities, as building blocks to construct high-power converters in a modular manner. High-power converters realized by using parallel connection are needed for example in multimegawatt wind power generation systems. Parallel connection of power converter units is also required in emerging applications such as photovoltaic and fuel cell power conversion. The parallel operation of power converter units is not, however, problem free. This is because parallel-operating units are subject to overcurrent stresses, which are caused by unequal load current sharing or currents that flow between the units. Commonly, the term ’circulatingcurrent’ is used to describe both the unequal load current sharing and the currents flowing between the units. Circulating currents, again, are caused by component tolerances and asynchronous operation of the parallel units. Parallel-operating units are also subject to stresses caused by unequal thermal stress distribution. Both of these problemscan, nevertheless, be handled with a proper circulating current control. To design an effective circulating current control system, we need information about circulating current dynamics. The dynamics of the circulating currents can be investigated by developing appropriate mathematical models. In this dissertation, circulating current models aredeveloped for two different types of parallel two-level three-phase inverter configurations. Themodels, which are developed for an arbitrary number of parallel units, provide a framework for analyzing circulating current generation mechanisms and developing circulating current control systems. In addition to developing circulating current models, modulation of parallel inverters is considered. It is illustrated that depending on the parallel inverter configuration and the modulation method applied, common-mode circulating currents may be excited as a consequence of the differential-mode circulating current control. To prevent the common-mode circulating currents that are caused by the modulation, a dual modulator method is introduced. The dual modulator basically consists of two independently operating modulators, the outputs of which eventually constitute the switching commands of the inverter. The two independently operating modulators are referred to as primary and secondary modulators. In its intended usage, the same voltage vector is fed to the primary modulators of each parallel unit, and the inputs of the secondary modulators are obtained from the circulating current controllers. To ensure that voltage commands obtained from the circulating current controllers are realizable, it must be guaranteed that the inverter is not driven into saturation by the primary modulator. The inverter saturation can be prevented by limiting the inputs of the primary and secondary modulators. Because of this, also a limitation algorithm is proposed. The operation of both the proposed dual modulator and the limitation algorithm is verified experimentally.
Resumo:
Concerns about condition of the environment and rising fossil fuel prices have accelerated the research of finding new cheap and environmental friendly energy source. Fuel cells are one of the most promising green technologies, especially in the field of distributed energy generation, backup power systems, transportation and mobile power generation. In this bachelor’s thesis use of fuel cells is studied, especially from the DC-DC converter point of view. This bachelor’s thesis concentrates on study of two different DC-DC converters. The aim of this thesis is to study design and steering methods for proposed converters. The ultimate aim of this thesis is to determine which one of proposed converters is most suitable for fuel cell applications.
Resumo:
Huoli ympäristön tilasta ja fossiilisten polttoaineiden hinnan nousu ovat vauhdittaneet tutkimusta uusien energialähteiden löytämiseksi. Polttokennot ovat yksi lupaavimmista tekniikoista etenkin hajautetun energiantuotannon, varavoimalaitosten sekä liikennevälineiden alueella. Polttokenno on tehonlähteenä kuitenkin hyvin epäideaalinen, ja se asettaa tehoelektroniikalle lukuisia erityisvaatimuksia. Polttokennon kytkeminen sähköverkkoon on tavallisesti toteutettu käyttämällä galvaanisesti erottavaa DC/DC hakkuria sekä vaihtosuuntaajaa sarjassa. Polttokennon kulumisen estämiseksi tehoelektroniikalta vaaditaan tarkkaa polttokennon lähtövirran hallintaa. Perinteisesti virran hallinta on toteutettu säätämällä hakkurin tulovirtaa PI (Proportional and Integral) tai PID (Proportional, Integral and Derivative) -säätimellä. Hakkurin epälineaarisuudesta johtuen tällainen ratkaisu ei välttämättä toimi kaukana linearisointipisteestä. Lisäksi perinteiset säätimet ovat herkkiä mallinnusvirheille. Tässä diplomityössä on esitetty polttokennon jännitettä nostavan hakkurin tilayhtälökeskiarvoistusmenetelmään perustuva malli, sekä malliin perustuva diskreettiaikainen integroiva liukuvan moodin säätö. Esitetty säätö on luonteeltaan epälineaarinen ja se soveltuu epälineaaristen ja heikosti tunnettujen järjestelmien säätämiseen.
Resumo:
This dissertation considers the impact of technology foresight in innovation within the context of a technology driven development. The main hypothesis made was that by using different methods of foresight in the industry level significant value could be created. The question was approached through a case study in portable fuel cell technology. The theoretical background of the study draws from Innovation, Product Development, Management of Technology, and Technology Foresight. The connection within the topics is made by analyzing foresight, not in a policy view as often done in Europe, but in a micro-level. Focusing mostly on how a technology driven development scenario could be analyzed. The study is based on a bibliometric, extrapolation and patent analysis within the context of a case study. In addition, a large two-year Delphi study was conducted. The study was finalized with a scenario work on the future possibilities of the case study technology. Original publications also consider several methodological issues. In the context of the case study, the study questions the practicality of establishing a portable fuel cell technology in Finland showing several impractical assumptions has been made. In a more conceptual level, the study makes notions on two underlying factors: policy-push technologies and growth of data. Policy-push questions in which level a policy effort towards a single technology is practical. The European foresight effort is more directed towards policy decisions in contrast to US foresight, which is to some extent corporate driven. Although the policy-based foresight has produced significant results in the European context, policy led efforts towards a single technology are challenging. Growth of data argues on the challenges produced by the large-scale application of quantitative measures of foresight. Bibliometric studies and trend extrapolations have been taken advantage of the increasing number of databases made available, and used these as the basis for forecasts. However, the relationship with actual development and quantitative evidence is still unproven.
Resumo:
Fuel cells are a promising alternative for clean and efficient energy production. A fuel cell is probably the most demanding of all distributed generation power sources. It resembles a solar cell in many ways, but sets strict limits to current ripple, common mode voltages and load variations. The typically low output voltage from the fuel cell stack needs to be boosted to a higher voltage level for grid interfacing. Due to the high electrical efficiency of the fuel cell, there is a need for high efficiency power converters, and in the case of low voltage, high current and galvanic isolation, the implementation of such converters is not a trivial task. This thesis presents galvanically isolated DC-DC converter topologies that have favorable characteristics for fuel cell usage and reviews the topologies from the viewpoint of electrical efficiency and cost efficiency. The focus is on evaluating the design issues when considering a single converter module having large current stresses. The dominating loss mechanism in low voltage, high current applications is conduction losses. In the case of MOSFETs, the conduction losses can be efficiently reduced by paralleling, but in the case of diodes, the effectiveness of paralleling depends strongly on the semiconductor material, diode parameters and output configuration. The transformer winding losses can be a major source of losses if the windings are not optimized according to the topology and the operating conditions. Transformer prototyping can be expensive and time consuming, and thus it is preferable to utilize various calculation methods during the design process in order to evaluate the performance of the transformer. This thesis reviews calculation methods for solid wire, litz wire and copper foil winding losses, and in order to evaluate the applicability of the methods, the calculations are compared against measurements and FEM simulations. By selecting a proper calculation method for each winding type, the winding losses can be predicted quite accurately before actually constructing the transformer. The transformer leakage inductance, the amount of which can also be calculated with reasonable accuracy, has a significant impact on the semiconductor switching losses. Therefore, the leakage inductance effects should also be taken into account when considering the overall efficiency of the converter. It is demonstrated in this thesis that although there are some distinctive differences in the loss distributions between the converter topologies, the differences in the overall efficiency can remain within a range of a few percentage points. However, the optimization effort required in order to achieve the high efficiencies is quite different in each topology. In the presence of practical constraints such as manufacturing complexity or cost, the question of topology selection can become crucial.
Resumo:
The connexin 32 (Cx32) is a protein that forms the channels that promote the gap junction intercellular communication (GJIC) in the liver, allowing the diffusion of small molecules through cytosol from cell-to-cell. Hepatic fibrosis is characterized by a disruption of normal tissue architeture by cellular lesions, and may alter the GJIC. This work aimed to study the expression and distribution of Cx32 in liver fibrosis induced by the oral administration of dimethylnitrosamine in female Wistar rats. The necropsy of the rats was carried out after five weeks of drug administration. They presented a hepatic fibrosis state. Sections from livers with fibrosis and from control livers were submitted to immunohistochemical, Real Time-PCR and Western-Blot analysis to Cx32. In fibrotic livers the Cxs were diffusely scattered in the cytoplasm, contrasting with the control livers, where the Cx32 formed junction plaques at the cell membrane. Also it was found a decrease in the gene expression of Cx32 without reduction in the protein quantity when compared with controls. These results suggest that there the mechanism of intercellular communication between hepatocytes was reduced by the fibrotic process, which may predispose to the occurrence of a neoplastic process, taken in account that connexins are considered tumor suppressing genes.
Resumo:
Ilmastonmuutos ja fossiilisten polttoaineiden ehtyminen ovat edesauttaneet uusiutuvien energialähteiden tutkimusta huomattavasti. Lisäksi alati kasvava sähköenergian tarve lisää hajautetun sähköntuotannon ja vaihtoehtoisten energialähteiden kiinnostavuutta. Yleisimpiä hajautetun sähköntuotannon energialähteitä ovat tuulivoima, aurinkovoima ja uutena tulokkaana polttokennot. Polttokennon kytkeminen sähköverkkoon vaatii tehoelektroniikkaa, ja yleensä yksinkertaisessa polttokennosovelluksessa polttokenno kytketään galvaanisesti erottavan yksisuuntaisen DC/DC-hakkurin ja vaihtosuuntaajan kanssa sarjaan. Polttokennon rinnalla voidaan käyttää akkua tasaamaan polttokennon syöttämää jännitettä, jolloin akun ja polttokennon väliin tarvitaan kaksisuuntainen DC/DC-hakkuri, joka pystyy siirtämään energiaa molempiin suuntiin. Tässä diplomityössä on esitetty kaksisuuntaisen DC/DC-hakkurin tilayhtälökeskiarvoistusmenetelmään perustuva malli sekä mallin perusteella toteutettu virtasäätö. Tutkittava hakkuritopologia on kokosilta-tyyppinen boost-hakkuri, ja säätömenetelmä keskiarvovirtasäätö. Työn tuloksena syntyi tilayhtälömalli kaksisuuntaiselle FB boost -hakkurille sekä sen tulokelan virran säätämiseen soveltuva säädin. Säädin toimii normaalitilanteissa hyvin, mutta erikoistilanteissa, kuten hakkurin tulojännitteen äkillisessä muutostilanteessa, vaadittaisiin tehokkaampi säädin, jolla saavutettaisiin nopeampi nousuaika ilman ylitystä ja oskillointia.
Resumo:
A strain of Xanthomonas campestris pv. vesicatoria showing resistance to 1.2 mM cupric sulfate was analyzed by atomic absorption spectroscopy and ESI (electron spectrophotometry imaging). Accumulation of copper was detected in the periphery of the cell membrane region, suggesting that the mechanism of copper resistance is similar to that previously described for Pseudomonas species. The ESI technique was used to detect copper in the membrane region. Copper-resistance in X. campestris pv. vesicatoria 484 is inducible and occurs by accumulation of the metal and not by efflux mechanism as has been suggested. The growth curve also showed that this system is inducible.
Resumo:
In the present investigation we studied the fusogenic process developed by influenza A, B and C viruses on cell surfaces and different factors associated with virus and cell membrane structures. The biological activity of purified virus strains was evaluated in hemagglutination, sialidase and fusion assays. Hemolysis by influenza A, B and C viruses ranging from 77.4 to 97.2%, from 20.0 to 65.0%, from 0.2 to 93.7% and from 9.0 to 76.1% was observed when human, chicken, rabbit and monkey erythrocytes, respectively, were tested at pH 5.5. At this pH, low hemolysis indexes for influenza A, B and C viruses were observed if horse erythrocytes were used as target cells for the fusion process, which could be explained by an inefficient receptor binding activity of influenza on N-glycolyl sialic acids. Differences in hemagglutinin receptor binding activity due to its specificity to N-acetyl or N-glycolyl cell surface oligosaccharides, density of these cellular receptors and level of negative charges on the cell surface may possibly explain these results, showing influence on the sialidase activity and the fusogenic process. Comparative analysis showed a lack of dependence between the sialidase and fusion activities developed by influenza B viruses. Influenza A viruses at low sialidase titers (<2) also exhibited clearly low hemolysis at pH 5.5 (15.8%), while influenza B viruses with similarly low sialidase titers showed highly variable hemolysis indexes (0.2 to 78.0%). These results support the idea that different virus and cell-associated factors such as those presented above have a significant effect on the multifactorial fusion process
Resumo:
This review explores advances in our understanding of the intracellular regulation of the endothelial isoform of nitric oxide synthase (eNOS) in the context of its dynamically regulated subcellular targeting. Nitric oxide (NO) is a labile molecule, and may play important biological roles both within the cell in which it is synthesized and in its interactions with nearby cells and molecules. The localization of eNOS within the cell importantly influences the biological role and chemical fate of the NO produced by the enzyme. eNOS, a Ca2+/calmodulin-dependent enzyme, is subject to a complex pattern of intracellular regulation, including co- and post-translational modifications and interactions with other proteins and ligands. In endothelial cells and cardiac myocytes eNOS is localized in specialized plasmalemmal signal-transducing domains termed caveolae; acylation of the enzyme by the fatty acids myristate and palmitate is required for targeting of the protein to caveolae. Targeting to caveolae facilitates eNOS activation following receptor stimulation. In resting cells, eNOS is tonically inhibited by its interactions with caveolin, the scaffolding protein in caveolae. However, following agonist activation, eNOS dissociates from caveolin, and nearly all the eNOS translocates to structures within the cell cytosol; following more protracted incubations with agonists, most of the cytosolic enzyme subsequently translocates back to the cell membrane. The agonist-induced internalization of eNOS is completely abrogated by chelation of intracellular Ca2+. These rapid receptor-mediated effects are seen not only for "classic" eNOS agonists such as bradykinin, but also for estradiol, indicating a novel non-genomic role for estrogen in eNOS activation. eNOS targeting to the membrane is labile, and is subject to receptor-regulated Ca2+-dependent reversible translocation, providing another point for regulation of NO-dependent signaling in the vascular endothelium.
Resumo:
Hypertension is one of the major precursors of atherosclerotic vascular disease, and vascular smooth muscle abnormal cell replication is a key feature of plaque formation. The present study was conducted to examine the relationship between hypertension and smooth muscle cell proliferation after balloon injury and to correlate neointima formation with resting membrane potential of uninjured smooth muscle cells, since it has been suggested that altered vascular function in hypertension may be related to the resetting of the resting membrane potential in spontaneously hypertensive rats (SHR). Neointima formation was induced by balloon injury to the carotid arteries of SHR and renovascular hypertensive rats (1K-1C), as well as in their normotensive controls, i.e., Wistar Kyoto (WKY) and normal Wistar (NWR) rats. After 14 days the animals were killed and the carotid arteries were submitted to histomorphometric and immunohistochemical analyses. Resting membrane potential measurements showed that uninjured carotid arteries from SHR smooth muscle cells were significantly depolarized (-46.5 ± 1.9 mV) compared to NWR (-69 ± 1.4 mV), NWR 1K-1C (-60.8 ± 1.6 mV), WKY (-67.1 ± 3.2 mV) and WKY 1K-1C (-56.9 ± 1.2 mV). The SHR arteries responded to balloon injury with an enhanced neointima formation (neo/media = 3.97 ± 0.86) when compared to arteries of all the other groups (NWR 0.93 ± 0.65, NWR 1K-1C 1.24 ± 0.45, WKY 1.22 ± 0.32, WKY 1K-1C 1.15 ± 0.74). Our results indicate that the increased fibroproliferative response observed in SHR is not related to the hypertensive state but could be associated with the resetting of the carotid smooth muscle cell resting membrane potential to a more depolarized state.