986 resultados para fracture reduction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the fracture behavior of magnesium single crystals is studied by conducting experiments with notched three point bend specimens of three crystallographic orientations. In the first and second orientations, the c-axis is along the normal to the flat surface of the notch, while in the third it is aligned with the notch front. For all the orientations, in situ electron back scattered diffraction observations made around the notch root show profuse tensile twinning of {10 (1) over bar2} type. Further, in the first two orientations basal and prismatic slip traces are identified from optical metallography. The width of the most prominent twin saturates at around 120-150 mu m, while twins continue to nucleate farther away to accommodate plastic deformation. In all the orientations, crack initiation occurs before the attainment of peak load and the crack grows stably along twin-matrix interface before deflecting at twin-twin intersections. Results show that profuse tensile twinning is an important energy dissipating mechanism that enhances the fracture toughness. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study demonstrates the use of few-layer borocarbonitride nanosheets synthesized by a simple method as non-platinum cathode catalysts for the oxygen reduction reaction (ORR) in alkaline medium. Composition-dependent ORR activity is observed and the best performance was found when the composition was carbon-rich. Mechanistic aspects reveal that ORR follows the 4e(-) pathway with kinetic parameters comparable to those of the commercial Pt/C catalyst. Excellent methanol tolerance is observed with the BCN nanosheets unlike with Pt/C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a simple hydrothermal synthesis of highly reproducible carbon nanoparticles in a size range between 2 and 7 nmfroma single precursor sucrose without either surface passivating agents or acids and bases. The carbon nanoparticles can be used as white light phosphors, especially for ultraviolet light emitting diodes and metal-free catalyst for the reduction of nitrophenol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lattice reduction (LR) aided detection algorithms are known to achieve the same diversity order as that of maximum-likelihood (ML) detection at low complexity. However, they suffer SNR loss compared to ML performance. The SNR loss is mainly due to imperfect orthogonalization and imperfect nearest neighbor quantization. In this paper, we propose an improved LR-aided (ILR) detection algorithm, where we specifically target to reduce the effects of both imperfect orthogonalization and imperfect nearest neighbor quantization. The proposed ILR detection algorithm is shown to achieve near-ML performance in large-MIMO systems and outperform other LR-aided detection algorithms in the literature. Specifically, the SNR loss incurred by the proposed ILR algorithm compared to ML performance is just 0.1 dB for 4-QAM and < 0.5 dB for 16-QAM in 16 x 16 V-BLAST MIMO system. This performance is superior compared to those of other LR-aided detection algorithms, whose SNR losses are in the 2 dB to 9 dB range.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Free-standing Pt-aluminide (PtAl) bond coats exhibit a linear stress strain response under tensile loading and undergo brittle cleavage fracture at temperatures below the brittle-to-ductile transition temperature (BDTT). Above the BDTT, these coatings show yielding and fail in a ductile manner. In this paper, the various micromechanisms affecting the tensile fracture stress (FS) below the BDTT and yield strength (YS) above the BDTT in a PtAl bond coat have been ascertained and quantified at various temperatures. The micromechanisms have been identified by carrying out microtensile testing of stand-alone PtAl coating specimens containing different levels of Pt at temperatures between room temperature and 1100 degrees C and correlation of the corresponding fracture mechanisms with the deformation substructure in the coating. An important aspect of the influence of Pt on the tensile behavior, slip characteristics, FS/YS and BDTT in the PtAl coating has also been examined. The addition of Pt enhances the FS of the coating by Pt solid solution strengthening and imparts a concomitant increase in fracture toughness and yet causes a significant increase in the BDTT of the coating. Published by Elsevier Ltd. on behalf of Acta Materialia Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aldimines react with reducing agents, such as Grignards, phenylsilane or zinc in the presence of titanium(IV) isopropoxide to form amines and reductively coupled imines (diamines). Using deuterium labeled reagents, the mechanism of reduction to form amines is described. Reducing agents, such as the Grignard and zinc result in the formation of low valent titanium (LVT), which in turn reduces the imine. On the other hand, phenylsilane reacts by a distinctly different mechanism and where a hydrogen atom from silicon is directly transferred to the titanium coordinated imine. (c) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a comparative study of the temperature dependent magnetic properties and electron paramagnetic resonance parameters of nano and bulk samples of Bi0.2Sr0.8MnO3 (BSMO). Bulk BSMO is known to have a high T-N similar to 260K and robust charge ordering (T-CO similar to 360 K). We confirm that the bulk sample shows an antiferromagnetic transition around similar to 260K and a spin-glass transition similar to 40 K. For the nano sample, we see a clear ferromagnetic transition at around similar to 120 K. We conclude that spin glass state, which is present due to the co-existence of antiferromagnetic and ferromagnetic states in the bulk sample, is suppressed in the nano sample and ferromagnetism is induced instead. (C) 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A variety of aliphatic and aromatic ketoaldehydes were reduced to the corresponding ketoalcohols with a mixture of sodium borohydride (1.2 equivalents) and sodium carbonate (sixfold molar excess) in water. Reactions were performed at room temperatures over (typically) 2 h, and yields of isolated products generally ranged from 70% to 85%. A biscarbonate-borane complex, (BH3)(2)CO2](2-) 2Na(+), possibly formed from the reagent mixture, is likely the active reductant. The moderated reactivity of this acylborane species would explain the chemoselectivity observed in the reactions. The readily available reagents and the mild aqueous conditions make for ease of operation and environmental compatibility, and make a useful addition to available methodology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Iridium nanostructures with different morphologies are synthesized by a simple, environmentally friendly approach in aqueous media under mild conditions. The morphology dependent electrocatalytic activity of Ir nanochains and nanoparticles towards oxygen reduction reaction (ORR) has been demonstrated in both acidic and alkaline media. Comparative electrochemical studies reveal that nanochains exhibit significantly enhanced ORR activities in both acidic and alkaline media as compared with nanoparticles, as a result of the continuous structure of interconnected particles. The mechanism of oxygen reduction on Ir nanostructures predominantly follows a four-electron pathway in alkaline and acidic solutions. Excellent stability and good selectivity towards methanol tolerance are reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solar radiation management (SRM) geoengineering has been proposed as a potential option to counteract climate change. We perform a set of idealized geoengineering simulations using Community Atmosphere Model version 3.1 developed at the National Center for Atmospheric Research to investigate the global hydrological implications of varying the latitudinal distribution of solar insolation reduction in SRM methods. To reduce the solar insolation we have prescribed sulfate aerosols in the stratosphere. The radiative forcing in the geoengineering simulations is the net forcing from a doubling of CO2 and the prescribed stratospheric aerosols. We find that for a fixed total mass of sulfate aerosols (12.6 Mt of SO4), relative to a uniform distribution which nearly offsets changes in global mean temperature from a doubling of CO2, global mean radiative forcing is larger when aerosol concentration is maximum at the poles leading to a warmer global mean climate and consequently an intensified hydrological cycle. Opposite changes are simulated when aerosol concentration is maximized in the tropics. We obtain a range of 1 K in global mean temperature and 3% in precipitation changes by varying the distribution pattern in our simulations: this range is about 50% of the climate change from a doubling of CO2. Hence, our study demonstrates that a range of global mean climate states, determined by the global mean radiative forcing, are possible for a fixed total amount of aerosols but with differing latitudinal distribution. However, it is important to note that this is an idealized study and thus not all important realistic climate processes are modeled.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

`'Cassie'' state of wetting can be established by trapping air pockets on the crevices of textured hydrophobic surfaces, leading to significant drag reduction. However, this drag reduction cannot be sustained due to gradual dissolution of trapped air into water. In this paper, we explore the possibility of sustaining the underwater Cassie state of wetting in a microchannel by controlling the solubility of air in water; the solubility being changed by controlling the local absolute pressure near the surface. We show that using this method, we can in fact make the water locally supersaturated with air thus encouraging the growth of trapped air pockets on the surface. In this case, the water acts as a pumping medium, delivering air to the crevices of the hydrophobic surface in the microchannel, where the presence of air pockets is most beneficial from the drag reduction perspective. In our experiments, the air trapped on a textured surface is visualized using total internal reflection based technique, at different local absolute pressures with the pressure drop (or drag) also being simultaneously measured. We find that, by controlling the pressure and hence the solubility close to the surface, we can either shrink or grow the trapped air bubbles, uniformly over a large surface area. The experiments show that, by precisely controlling the pressure and hence the solubility we can sustain the `'Cassie state'' over extended periods of time. This method thus provides a means of getting sustained drag reduction from a textured hydrophobic surface in channel flows. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the effects of nanoscale ZnO reinforcement on the room temperature tensile and compressive response of monolithic Mg were studied. Experimental observations indicated strength properties improvement due to nanoscale ZnO addition. A maximum increment in tensile yield strength by similar to 55% and compressive yield strength by 90% (with reduced tension-compression asymmetry) was achieved when 0.8 vol.% ZnO nanoparticles were added to Mg. While the fracture strain values under tensile loads were found to increase significantly (by similar to 95%, in case of Mg-0.48ZnO), it remained largely unaffected under compressive loads. The microstructural characteristics studied in order to comprehend the mechanical response showed significant grain refinement due to grain boundary pinning effect of nano-ZnO particles which resulted in strengthening of Mg. Texture analysis using X-ray and EBSD methods indicated weakening of basal fibre texture in Mg/ZnO nanocomposites which contributed towards the reduction in tension-compression yield asymmetry and enhancement in tensile ductility when compared to pure Mg. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, a detailed investigation on the effect of heat treatment on the microstructural characteristics, texture evolution and mechanical properties of Mg-(5.6Ti+2.5B(4)C)(BM) hybrid nanocomposite is presented. Optimised heat treatment parameters, namely, heat treatment temperature and heat treatment time, were first identified through grain size and microhardness measurements. Initially, heat treatment of composites was conducted at temperature range between 100 and 300 degrees C for 1 h. Based on optical microscopic analysis and microhardness measurements, it was evident that significant grain growth and reduction in microhardness occurred for temperatures > 200 degrees C. The cutoff temperature that caused significant grain growth/matrix softening was thus identified. Second, at constant temperature (200 degrees C), the effect of variation of heat treatment time was carried out (ranging between 1 and 5 h) so as to identify the range wherein increase in average grain size and reduction in microhardness occurred. Furthering the study, the effect of optimised heat treatment parameters (200 degrees C, 5 h) on the microstructural texture evolution and hence, on the tensile and compressive properties of the Mg-(5.6Ti+2.5B(4)C)(BM) hybrid nanocomposite was carried out. From electron backscattered diffraction (EBSD) analysis, it was identified that the optimised heat treatment resulted in recrystallisation and residual stress relaxation, as evident from the presence of similar to 87% strain free grains, when compared to that observed in the non-heat treated/as extruded condition (i.e. 2.2 times greater than in the as extruded condition). For the heat treated composite, under both tensile and compressive loads, a significant improvement in fracture strain values (similar to 60% increase) was observed when compared to that of the non-heat treated counterpart, with similar to 20% reduction in yield strength. Based on structure-property correlation, the change in mechanical characteristics is identified to be due to: (1) the presence of less stressed matrix/reinforcement interface due to the relief of residual stresses and (2) texture weakening due to matrix recrystallisation effects, both arising due to heat treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article reports on analysis of fracture processes in reinforced concrete (RC) beams with acoustic emission (AE) technique. An emphasis was given to study the effect of loading rate on variation in AE based b-values with the development of cracks in RC structures. RC beams of length 3.2 m were tested under load control at a rate of 4 kN/s, 5 kN/s and 6 kN/s and the b-value analysis available in seismology was used to study the fracture process in RC structures. Moreover, the b-value is related to the strain in steel to assess the damage state. It is observed that when the loading rate is higher, quick cracking development lead to rapid fluctuations and drops in the b-values. Also it is observed that concrete behaves relatively more brittle at higher loading rates (or at higher strain rates). The average b-values are lower as a few but larger amplitudes of AE events occur in contrast to more number of low amplitude AE events occur at low loading rates (or at low strain rates). (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate the first STM evaluation of the Young's modulus (E) of nanoparticles (NPs) of different sizes. The sample deformation induced by tip-sample interaction has been determined using current-distance (I-Z) spectroscopy. As a result of tip-sample interaction, and the induced surface deformations, the I-z curves deviates from pure exponential dependence. Normally, in order to analyze the deformation quantitatively, the tip radius must be known. We show, that this necessity is eliminated by measuring the deformation on a substrate with a known Young's modulus (Au(111)) and estimating the tip radius, and afterwards, using the same tip (with a known radius) to measure the (unknown) Young's modulus of another sample (nanoparticles of CdS). The Young's modulus values found for 3 NP's samples of average diameters of 3.7, 6 and 7.5 nm, were E similar to 73%, 78% and 88% of the bulk value, respectively. These results are in a good agreement with the theoretically predicted reduction of the Young's modulus due to the changes in hydrostatic stresses which resulted from surface tension in nanoparticles with different sizes. Our calculation using third order elastic constants gives a reduction of E which scales linearly with 1/r (r is the NP's radius). This demonstrates the applicability of scanning tunneling spectroscopy for local mechanical characterization of nanoobjects. The method does not include a direct measurement of the tip-sample force but is rather based on the study of the relative elastic response. (C) 2014 Elsevier B.V. All rights reserved.