911 resultados para fish sampling
Resumo:
AMPK, a master metabolic switch, mediates the observed increase of glucose uptake in locomotory muscle of mammals during exercise. AMPK is activated by changes in the intracellular AMP:ATP ratio when ATP consumption is stimulated by contractile activity but also by AICAR and metformin, compounds that increase glucose transport in mammalian muscle cells. However, the possible role of AMPK in the regulation of glucose metabolism in skeletal muscle has not been investigated in other vertebrates, including fish. In this study, we investigated the effects of AMPK activators on glucose uptake, AMPK activity, cell surface levels of trout GLUT4 and expression of GLUT1 and GLUT4 as well as the expression of enzymes regulating glucose disposal and PGC1α in trout myotubes derived from a primary muscle cell culture. We show that AICAR and metformin significantly stimulated glucose uptake (1.6 and 1.3 fold, respectively) and that Compound C completely abrogated the stimulatory effects of the AMPK activators on glucose uptake. The combination of insulin and AMPK activators did not result in additive nor synergistic effects on glucose uptake. Moreover, exposure of trout myotubes to AICAR and metformin resulted in an increase in AMPK activity (3.8 and 3 fold, respectively). We also provide evidence suggesting that stimulation of glucose uptake by AMPK activators in trout myotubes may take place, at least in part, by increasing the cell surface and mRNA levels of trout GLUT4. Finally, AICAR increased the mRNA levels of genes involved in glucose disposal (hexokinase, 6-phosphofructokinase, pyruvate kinase and citrate synthase) and mitochondrial biogenesis (PGC-1α) and did not affect glycogen content or glycogen synthase mRNA levels in trout myotubes. Therefore, we provide evidence, for the first time in non-mammalian vertebrates, suggesting a potentially important role of AMPK in stimulating glucose uptake and utilization in the skeletal muscle of fish.
Resumo:
Given their central role in mercury (Hg) excretion and suitability as reservoirs, bird feathers are useful Hg biomonitors. Nevertheless, the interpretation of Hg concentrations is still questioned as a result of a poor knowledge of feather physiology and mechanisms affecting Hg deposition. Given the constraints of feather availability to ecotoxicological studies, we tested the effect of intra-individual differences in Hg concentrations according to feather type (body vs. flight feathers), position in the wing and size (mass and length) in order to understand how these factors could affect Hg estimates. We measured Hg concentration of 154 feathers from 28 un-moulted barn owls (Tyto alba), collected dead on roadsides. Median Hg concentration was 0.45 (0.076-4.5) mg kg(-1) in body feathers, 0.44 (0.040-4.9) mg kg(-1) in primary and 0.60 (0.042-4.7) mg kg(-1) in secondary feathers, and we found a poor effect of feather type on intra-individual Hg levels. We also found a negative effect of wing feather mass on Hg concentration but not of feather length and of its position in the wing. We hypothesize that differences in feather growth rate may be the main driver of between-feather differences in Hg concentrations, which can have implications in the interpretation of Hg concentrations in feathers. Finally, we recommend that, whenever possible, several feathers from the same individual should be analysed. The five innermost primaries have lowest mean deviations to both between-feather and intra-individual mean Hg concentration and thus should be selected under restrictive sampling scenarios.
Resumo:
This study aimed at comparing the efficiency of various sampling materials for the collection and subsequent analysis of organic gunshot residues (OGSR). To the best of our knowledge, it is the first time that sampling devices were investigated in detail for further quantitation of OGSR by LC-MS. Seven sampling materials, namely two "swab"-type and five "stub"-type collection materials, were tested. The investigation started with the development of a simple and robust LC-MS method able to separate and quantify molecules typically found in gunpowders, such as diphenylamine or ethylcentralite. The evaluation of sampling materials was then systematically carried out by first analysing blank extracts of the materials to check for potential interferences and determining matrix effects. Based on these results, the best four materials, namely cotton buds, polyester swabs, a tape from 3M and PTFE were compared in terms of collection efficiency during shooting experiments using a set of 9 mm Luger ammunition. It was found that the tape was capable of recovering the highest amounts of OGSR. As tape-lifting is the technique currently used in routine for inorganic GSR, OGSR analysis might be implemented without modifying IGSR sampling and analysis procedure.
Resumo:
Postprint (published version)
Resumo:
Postprint (published version)
Resumo:
Epitheliocystis is an infectious disease affecting gills and skin of various freshwater and marine fishes, associated with high mortality and reduced growth of survivors. Candidatus Piscichlamydia salmonis and Clavochlamydia salmonicola have recently been identified as aetiological agents of epitheliocystis in Atlantic Salmon. In addition, several other members of the Chlamydiales order have been identified in other fish species. To clarify the pathogenicity of Chlamydia-like organisms towards fishes, we investigated the permissivity of two fish cell lines, EPC-175 (Fathead Minnow) and RTG-2 (rainbow trout) to three Chlamydia-related bacteria: Waddlia chondrophila, Parachlamydia acanthamoebae and Estrella lausannensis. Quantitative PCR and immunofluorescence demonstrated that W. chondrophila and, to a lesser extent, E. lausannensis were able to replicate in the two cell lines tested. Waddlia chondrophila multiplied rapidly in its host cell and a strong cytopathic effect was observed. During E. lausannensis infection, we observed a limited replication of the bacteria not followed by host cell lysis. Very limited replication of P. acanthamoebae was observed in both cell lines tested. Given its high infectivity and cytopathic effect towards fish cell lines, W. chondrophila represents the most interesting Chlamydia-related bacteria to be used to develop an in vivo model of epitheliocystis disease in fishes.
Resumo:
En aquesta nota es recullen noves observacions de diverses espècies de peixos exòtics obtingudes en un mostreig efectuat de febrer a maig de 2003, en catorze embassaments de Catalunya
Resumo:
A BASIC computer program (REMOVAL) was developed to compute in a VAXNMS environment all the calculations of the removal method for population size estimation (catch-effort method for closed populations with constant sampling effort). The program follows the maximum likelihood methodology,checks the failure conditions, applies the appropriate formula, and displays the estimates of population size and catchability, with their standard deviations and coefficients of variation, and two goodness-of-fit statistics with their significance levels. Data of removal experiments for the cyprinodontid fish Aphanius iberus in the Alt Emporda wetlands are used to exemplify the use of the program
Resumo:
We study the relationship between stable sampling sequences for bandlimited functions in $L^p(\R^n)$ and the Fourier multipliers in $L^p$. In the case that the sequence is a lattice and the spectrum is a fundamental domain for the lattice the connection is complete. In the case of irregular sequences there is still a partial relationship.
Resumo:
Artificial reefs have barely been used in Neotropical reservoirs (about five studies in three reservoirs), despite their potential as a fishery management tool to create new habitats and also to understand fish ecology. We experimentally assessed how reef material (ceramic, concrete, and PVC) and time modulated fish colonization of artificial reefs deployed in Itaipu Reservoir, a large reservoir of the mainstem Parana´ River, Brazil. Fish richness, abundance, and biomass were significantly greater in the reef treatments than at control sites. Among the experimental reefs, ceramic followed by the concrete treatments were the materials most effectively colonized, harboring the majority of the 13 fish species recorded. Although dependent on material type, many of the regularities of ecological successions were also observed in the artificial reefs, including decelerating increases in species richness, abundance, mean individual size, and species loss rates with time and decelerating decreases of species gain and turnover rates. Species composition also varied with material type and time, together with suites of life history traits: more equilibrium species (i.e., fishes of intermediate size that often exhibit parental care and produce fewer but larger offspring) of the Winemiller-Rose model of fish life histories prevailed in later successional stages. Overall, our study suggests that experimental reefs are a promising tool to understand ecological succession of fish assemblages, particularly in tropical ecosystems given their high species richness and low seasonality
Resumo:
Mediterranean endemic freshwater fish are among the most threatened biota in the world. Distinguishing the role of different extinction drivers and their potential interactions is crucial for achieving conservation goals. While some authors argue that invasive species are a main driver of native species declines, others see their proliferation as a co-occurring process to biodiversity loss driven by habitat degradation. It is difficult to discern between the two potential causes given that few invaded ecosystems are free from habitat degradation, and that both factors may interact in different ways. Here we analyze the relative importance of habitat degradation and invasive species in the decline of native fish assemblages in the Guadiana River basin (southwestern Iberian Peninsula) using an information theoretic approach to evaluate interaction pathways between invasive species and habitat degradation (structural equation modeling, SEM). We also tested the possible changes in the functional relationships between invasive and native species, measured as the per capita effect of invasive species, using ANCOVA. We found that the abundance of invasive species was the best single predictor of natives’ decline and had the highest Akaike weight among the set of predictor variables examined. Habitat degradation neither played an active role nor influenced the per capita effect of invasive species on natives. Our analyses indicated that downstream reaches and areas close to reservoirs had the most invaded fish assemblages, independently of their habitat degradation status. The proliferation of invasive species poses a strong threat to the persistence of native assemblages in highly fluctuating environments. Therefore, conservation efforts to reduce native freshwater fish diversity loss in Mediterranean rivers should focus on mitigating the effect of invasive species and preventing future invasions
Homogenization Dynamics and Introduction Routes of Invasive Freshwater Fish in the Iberian Peninsula
Resumo:
Nonnative invasive species are one of the main global threats to biodiversity. The understanding of the traits characterizing successful invaders and invasion-prone ecosystems is increasing, but our predictive ability is still limited. Quantitative information on biotic homogenization and particularly its temporal dynamics is even scarcer. We used freshwater fish distribution data in the Iberian Peninsula in four periods (before human intervention, 1991, 1995, and 2001) to assess the temporal dynamics of biotic homogenization among river basins. The percentage of introduced species among fish faunas has increased in recent times (from 41.8% in 1991 to 52.5% in 2001), leading to a clear increase in the similarity of community composition among basins. The mean Jaccard's index increase (a measure of biotic homogenization) from the pristine situation to the present (17.1%) was similar to that for Californian fish but higher than for other studies. However, biotic homogenization was found to be a temporally dynamic process, with finer temporal grain analyses detecting transient stages of biotic differentiation. Introduced species assemblages were spatially structured along a latitudinal gradient in the Iberian Peninsula, with species related to sport fishing being characteristic of northern basins. Although the comparison of fish distributions in the Iberian Peninsula and France showed significant and generalized biotic homogenization, nonnative assemblages of northeastern Iberian basins were more similar to those of France than to those of the rest of the Iberian Peninsula, indicating a main introduction route. Species introduced to the Iberian Peninsula tended to be mainly piscivores or widely introduced species that previously had been introduced to France. Our results indicate that the simultaneous analysis of the spatial distribution of introduced assemblages (excluding native species that reflect other biogeographical patterns) and their specific traits can be an effective tool to detect introduction and invasion routes and to predict future invaders from donor regions
Resumo:
Condition-specific competition is widespread in nature. Species inhabiting heterogeneous environments tend to differ in competitive abilities depending on environmental stressors. Interactions between these factors can allow coexistence of competing species, which may be particularly important between invasive and native species. Here, we examine the effects of temperature on competitiveinteractions between invasive mosquitofish, Gambusia holbrooki, and an endemic Iberian toothcarp, Aphanius iberus. We compare the tendency to approach heterospecifics and food capture rates between these two species, and examine differences between sexes and species in aggressive interactions, at three different temperatures (19, 24 and 29uC) in three laboratory experiments. Mosquitofish exhibit much more aggression than toothcarp. We show that mosquitofish have the capacity to competitively displace toothcarp through interference competition and this outcome is more likely at higher temperatures. We also show a reversal in the competitive hierarchy through reduced food capture rate by mosquitofish at lower temperatures and suggest that these two types of competition may act synergistically to deprive toothcarp of food at higher temperatures. Males of both species carry out more overtly aggressive acts than females, which is probably related to the marked sexual dimorphism and associated mating systems of these two species. Mosquitofish may thus impact heavily on toothcarp, and competition from mosquitofish, especially in warmer summer months, may lead to changes in abundance of the native species and displacement to non-preferred habitats. Globally increasing temperatures mean that highly invasive, warm-water mosquitofish may be able to colonize environments from which they are currently excluded through reduced physiological tolerance to low temperatures. Research into the effects of temperature on interactions between native and invasive species is thus of fundamental importance