984 resultados para fish evolution
Resumo:
Undoped and Te-doped gallium antimonide (GaSb) layers have been grown on GaSb bulk substrates by the liquid phase epitaxial technique from Ga-rich and Sb-rich melts. The nucleation morphology of the grown layers has been studied as a function of growth temperature and substrate orientation. MOS structures have been fabricated on the epilayers to evaluate the native defect content in the grown layers from the C-V characteristics. Layers grown from antimony rich melts always exhibit p-type conductivity. In contrast, a type conversion from p- to n- was observed in layers grown from gallium rich melts below 400 degrees C. The electron mobility of undoped n-type layers grown from Ga-rich melts and tellurium doped layers grown from Sb- and Ga-rich solutions has been evaluated.
Hot deformation and microstructural evolution in an alpha(2)/O titanium aluminide alloy Ti-25Al-15Nb
Resumo:
Deformation processing and microstructural development of an alpha(2)/O aluminide alloy Ti-25Al-15Nb (at.%) was studied in the temperature range of 950 to 1200 degrees C and strain rate range of 10(-3) to 100 s(-1). Regions of processing and instability were identified using dynamic materials model. Dynamic recrystallization (DRX) of alpha(2)/O phase and p phase were seen to occur in the region of 950 to 1050 degrees C/0.001 to 0.05 s(-1) and 1125 to 1175 degrees C/0.001 to 0.1 s(-1), respectively. Unstable flow was seen to occur in the region of 1050 to 1190 degrees C/10 to 100 s(-1). Thermal activation analysis showed that DRX of alpha(2)/O and beta was controlled by cross-slip.
Resumo:
In this paper the effects of constant and cyclic power loads on the evolution of interfacial reaction layers in lead-free solder interconnections are presented. Firstly, the differences in the growth behavior of intermetallic compound (IMC) layers at the cathode and anode sides of the interconnections are rationalized. This is done by considering the changes in the intrinsic fluxes of elements owing to electromigration as well as taking into account the fact that the growth of Cu3Sn and Cu6Sn5 are coupled via interfacial reactions. In this way, better understanding of the effect of electron flux on the growth of each individual layer in the Cu-Sn system can be achieved. Secondly, it is shown that there is a distinct difference between steady-state current stressing (constant current, constant temperature) and power cycling with alternating on- and off-cycle periods (accompanied by a change of temperature). The reasons behind the observed differences are subsequently discussed. Finally, special care is taken to ensure that the current densities are chosen in such a way that there is no risk for even partial melting of the solder interconnections.
Resumo:
Distribution of particle reinforcements in cast composites is determined by the morphology of the solidification front. Interestingly, during solidification, the morphology of the interface is intrinsically affected by the presence of dispersed reinforcements. Thus the dispersoid distribution and length scale of matrix microstructure is a result of the interplay between these two. A proper combination of material and process parameters can be used to obtain composites with tailored microstructures. This requires the generation of a broad data base and optimization of the complete solidification process. The length scale of soldification microtructure has a large influence on the mechanical properties of the composites. This presentation addresses the concept of a particle distribution map which can help in predicting particle distribution under different solidification conditions Future research directions have also been indicated.
Resumo:
Devitrification of spray pyrolysed, amorphous ZrO2-Al2O3 solid solution produces nanocrystalline microstructures (grain sizes 10-20 nm). In this study, spray pyrolysed amorphous ZrO2-40 mol% Al2O3 powder displayed good sinterability during decomposition, after spraying, of the nitrate precursors up to 1023K. Hot pressing of fully pyrolysed, pre-sintered (more than 70% dense) pellets at 923K and 750 MPa produced an amorphous pellet with less than 2% porosity. The results indicate the possibility of producing dense, amorphous pellets that can be heat treated further to produce nanocrystalline microstructures conducive for superplasticity.
Resumo:
A detailed study of the layered manganite La1+xSr2-xMn2O7 has been performed, establishing that within the composition range 0.1 less than or equal to x less than or equal to 0.45 the phases crystallize in the I4/mmm space group. The evolution of structural parameters with x: in this composition range has been followed using a novel application of an existing program for the Rietveld analysis of powder diffraction data. The structure, a familiar intergrowth of rock-salt (La,Sr)O slabs and double perovskite (La,Sr)(2)Mn2O6 units, is characterized by a reluctance to deform the latter. This manifests as a ''pumping'' of the larger Sr-II ion into the 12-coordinate site of the structure as x is increased. We report these features of the structure as well as electrical transport and magnetic properties, in light of recent observations of giant, negative magnetoresistance in these systems.
Resumo:
Granular alloys of Cu with FeCo were prepared by the melt-spinning technique. The alloy was characterized by x-ray, transmission electron microscopy, vibrating sample magnetometer, and magnetoresistance measurements. The alloys were heat treated for different temperatures to optimize the magnetoresistance properties. Structural characterization reveals that the FeCo phase initially precipitates out as fcc and later transforms to the bcc structure by martensitic transformation. It is seen that the trend in the magnetoresistance properties is different for the measurements carried out at room temperature and 4.2 K. This has been attributed to the transformation of fine fcc precipitates to the bcc structure during the low temperature measurements. It is seen that the presence of fine particles causes an increase in the field for saturation and is not suitable for applications where moderate field giant magnetoresistance is required. (C) 1999 American Institute of Physics. [S0021-8979(99)08317-6].
Resumo:
In this paper, we report an analysis of the protein sequence length distribution for 13 bacteria, four archaea and one eukaryote whose genomes have been completely sequenced, The frequency distribution of protein sequence length for all the 18 organisms are remarkably similar, independent of genome size and can be described in terms of a lognormal probability distribution function. A simple stochastic model based on multiplicative processes has been proposed to explain the sequence length distribution. The stochastic model supports the random-origin hypothesis of protein sequences in genomes. Distributions of large proteins deviate from the overall lognormal behavior. Their cumulative distribution follows a power-law analogous to Pareto's law used to describe the income distribution of the wealthy. The protein sequence length distribution in genomes of organisms has important implications for microbial evolution and applications. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Glasses of various compositions in the system (100 - x)Li-2 B-4 O-7 - x (SrO-Bi2O3-Nb2O5) (10 less than or equal to x less than or equal to 60) (in molar ratio) were prepared via a conventional melt-quenching technique. The glassy nature of the as-quenched samples was established by Differential Thermal Analyses (DTA). X-ray powder diffraction (XRD) and Transmission Electron Microscopic (TEM) studies confirmed the amorphous nature of the as quenched and crystallinity in the heat-treated samples. The formation of nanocrystalline layered perovskite SrBi2Nb2O9 (SBN) phase, in the samples heat-treated at temperatures higher than 550degreesC, through an intermediate fluorite phase in the LBO glass matrix was confirmed by both the XRD and High Resolution Transmission Electron Microscopy (HRTEM). The samples that were heat-treated at two different temperatures, 550 and 625degreesC, (containing 0.35 and 0.47 mum sized SBN crystallites) exhibited broad dielectric anomalies in the vicinity of ferroelectric to paraelectric transition temperature of the parent SBN ceramics. A downward shift in the phase transition temperature was observed with decreasing crystallite size of SBN. The observation of pyroelectric and ferroelectric properties for the present samples confirmed their polar nature.
Resumo:
The compositional evolution in sputter deposited LiCoO(2) thin films is influenced by process parameters involved during deposition. The electrochemical performance of these films strongly depends on their microstructure, preferential orientation and stoichiometry. The transport process of sputtered Li and Co atoms from the LiCoO(2) target to the substrate, through Ar plasma in a planar magnetron configuration, was investigated based on the Monte Carlo technique. The effect of sputtering gas pressure and the substrate-target distance (d(st)) on Li/Co ratio, as well as, energy and angular distribution of sputtered atoms on the substrate were examined. Stable Li/Co ratios have been obtained at 5 Pa pressure and d(st) in the range 5 11 cm. The kinetic energy and incident angular distribution of Li and Co atoms reaching the substrate have been found to be dependent on sputtering pressure. Simulations were extended to predict compositional variations in films prepared at various process conditions. These results were compared with the composition of films determined experimentally using x-ray photoelectron spectroscopy (XPS). Li/Co ratio calculated using XPS was in moderate agreement with that of the simulated value. The measured film thickness followed the same trend as predicted by simulation. These studies are shown to be useful in understanding the complexities in multicomponent sputtering. (C) 2011 American Institute of Physics. doi:10.1063/1.3597829]
Resumo:
While bonding between d(10) atoms and ions in molecular systems has been well studied, less attention has been paid to interactions between such seemingly closed shell species in extended inorganic solids. In this contribution, we present visualizations of the electronic structures of the delafossites ABO(2) (A = Cu, Ag, Au) with particular emphasis on the nature of d(10)-d(10) interactions in the close packed plane of the coinage metal ion. We find that on going from Cu to Ag to Au, the extent of bonding between A and A increases. However, the structures (in terms of distances) of these compounds are largely determined by the strongly ionic 13,11 0 interaction and for the larger B ions Sc, In and Y, the A atoms are sufficiently well-separated that A-A bonding is almost negligible. We also analyze some interesting differences between Ag and Au, including the larger A-O covalency of the Au. The trends in electronic structure suggest that the Ag and Au compounds are not good candidate transparent conducting oxides. (C) 2002 Editions scientifiques et medicales Elsevier SAS. All rights reserved.
Resumo:
Submicron size Co, Ni and Co-Ni alloy powders have been synthesized by the polyol method using the corresponding metal malonates and Pd powder by reduction of PdOx in methanol. The kinetics of the hydrogen evolution reaction ( HER) in 6 M KOH electrolyte have been studied on electrodes made from the pressed powders. The d.c. polarization measurements have resulted in a value close to 120 mV decade(-1) for the Tafel slope, suggesting that the HER follows the Volmer-Heyrovsky mechanism. The values of exchange current density (i(o)) are in the range 1-10 mA cm(-2) for electrodes fabricated in the study. The a.c. impedance spectra measured at several potentials in the HER region showed a single semicircle in the Nyquist plots. Exchange current density (i(o)) and energy transfer coefficient (alpha) have been calculated by employing a nonlinear least square-fitting program.
Resumo:
Evolution of deformation texture in commercially pure titanium with submicron grain size (SMG) was studied using x-ray diffraction (XRD) and electron back scatter diffraction (EBSD) methods. The material was deformed by rolling at room temperature. The deformation mechanism was found to be slip dominated with a pyramidal