912 resultados para finite element methods
Resumo:
The paper presents a theory for modeling flow in anisotropic, viscous rock. This theory has originally been developed for the simulation of large deformation processes including the folding and kinking of multi-layered visco-elastic rock (Muhlhaus et al. [1,2]). The orientation of slip planes in the context of crystallographic slip is determined by the normal vector - the director - of these surfaces. The model is applied to simulate anisotropic mantle convection. We compare the evolution of flow patterns, Nusselt number and director orientations for isotropic and anisotropic rheologies. In the simulations we utilize two different finite element methodologies: The Lagrangian Integration Point Method Moresi et al [8] and an Eulerian formulation, which we implemented into the finite element based pde solver Fastflo (www.cmis.csiro.au/Fastflo/). The reason for utilizing two different finite element codes was firstly to study the influence of an anisotropic power law rheology which currently is not implemented into the Lagrangian Integration point scheme [8] and secondly to study the numerical performance of Eulerian (Fastflo)- and Lagrangian integration schemes [8]. It turned out that whereas in the Lagrangian method the Nusselt number vs time plot reached only a quasi steady state where the Nusselt number oscillates around a steady state value the Eulerian scheme reaches exact steady states and produces a high degree of alignment (director orientation locally orthogonal to velocity vector almost everywhere in the computational domain). In the simulations emergent anisotropy was strongest in terms of modulus contrast in the up and down-welling plumes. Mechanisms for anisotropic material behavior in the mantle dynamics context are discussed by Christensen [3]. The dominant mineral phases in the mantle generally do not exhibit strong elastic anisotropy but they still may be oriented by the convective flow. Thus viscous anisotropy (the main focus of this paper) may or may not correlate with elastic or seismic anisotropy.
Resumo:
Exact analytical solutions of the critical Rayleigh numbers have been obtained for a hydrothermal system consisting of a horizontal porous layer with temperature-dependent viscosity. The boundary conditions considered are constant temperature and zero vertical Darcy velocity at both the top and bottom of the layer. Not only can the derived analytical solutions be readily used to examine the effect of the temperature-dependent viscosity on the temperature-gradient driven convective flow, but also they can be used to validate the numerical methods such as the finite-element method and finite-difference method for dealing with the same kind of problem. The related analytical and numerical results demonstrated that the temperature-dependent viscosity destabilizes the temperature-gradient driven convective flow and therefore, may affect the ore body formation and mineralization in the upper crust of the Earth. Copyright (C) 2003 John Wiley Sons, Ltd.
Resumo:
The solidification of intruded magma in porous rocks can result in the following two consequences: (1) the heat release due to the solidification of the interface between the rock and intruded magma and (2) the mass release of the volatile fluids in the region where the intruded magma is solidified into the rock. Traditionally, the intruded magma solidification problem is treated as a moving interface (i.e. the solidification interface between the rock and intruded magma) problem to consider these consequences in conventional numerical methods. This paper presents an alternative new approach to simulate thermal and chemical consequences/effects of magma intrusion in geological systems, which are composed of porous rocks. In the proposed new approach and algorithm, the original magma solidification problem with a moving boundary between the rock and intruded magma is transformed into a new problem without the moving boundary but with the proposed mass source and physically equivalent heat source. The major advantage in using the proposed equivalent algorithm is that a fixed mesh of finite elements with a variable integration time-step can be employed to simulate the consequences and effects of the intruded magma solidification using the conventional finite element method. The correctness and usefulness of the proposed equivalent algorithm have been demonstrated by a benchmark magma solidification problem. Copyright (c) 2005 John Wiley & Sons, Ltd.
Resumo:
Numerical methods are used to simulate the double-diffusion driven convective pore-fluid flow and rock alteration in three-dimensional fluid-saturated geological fault zones. The double diffusion is caused by a combination of both the positive upward temperature gradient and the positive downward salinity concentration gradient within a three-dimensional fluid-saturated geological fault zone, which is assumed to be more permeable than its surrounding rocks. In order to ensure the physical meaningfulness of the obtained numerical solutions, the numerical method used in this study is validated by a benchmark problem, for which the analytical solution to the critical Rayleigh number of the system is available. The theoretical value of the critical Rayleigh number of a three-dimensional fluid-saturated geological fault zone system can be used to judge whether or not the double-diffusion driven convective pore-fluid flow can take place within the system. After the possibility of triggering the double-diffusion driven convective pore-fluid flow is theoretically validated for the numerical model of a three-dimensional fluid-saturated geological fault zone system, the corresponding numerical solutions for the convective flow and temperature are directly coupled with a geochemical system. Through the numerical simulation of the coupled system between the convective fluid flow, heat transfer, mass transport and chemical reactions, we have investigated the effect of the double-diffusion driven convective pore-fluid flow on the rock alteration, which is the direct consequence of mineral redistribution due to its dissolution, transportation and precipitation, within the three-dimensional fluid-saturated geological fault zone system. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Purpose The aim of this study was to evaluate the ability of bond strength tests to accurately measure the bond strength of fiber posts luted into root canals Materials and Methods The test methods studied were hourglass microtensile (HM), push-out (PS), modified push out (MP) and pull out (PL) The evaluated parameters were bond strength values, reliability (using Weibull analysis), failure mode (using confocal microscopy), and stress distribution (using finite element analysis) Forty human intact single rooted and endodontically treated teeth were divided into four groups Each group was assigned one of the test methods The samples in the HM and PS groups were 1 0 +/- 0 1 mm thick, the HM samples were hourglass shaped and the PS samples were disk shaped For the PL and MP groups, each 1 mm dentin slice was luted with a fiber post piece Three dimensional models of each group were made and stress was analyzed based on Von Mises criteria Results PL provided the highest values of bond strength followed by MP both of which also had greater amounts of adhesive failures PS showed the highest frequency of cohesive failures MP showed a more homogeneous stress distribution and a higher Weibull modulus Conclusion The specimen design directly influences the biomechanical behavior of bond strength tests
Resumo:
Objectives. Evaluate the effect of testing system compliance on polymerization stress and stress distribution of composites. Methods. Composites tested were Filtek Z250 (FZ), Herculite (HL), Tetric Ceram (TC), Helio Fill-AP (HF) and Heliomolar (HM). Stress was determined in 1-mm thick specimens, inserted between two rods of either poly(methyl methacrylate), PMMA, or glass. Experimental nominal stress (sigma(exp)) was calculated by dividing the maximum force recorded 5 min after photoactivation by the cross-sectional area of the rod. Composites` elastic modulus (E) was obtained by three-point bending. Data were submitted to one-way ANOVA/Tukey`s test (alpha = 0.05). Stress distribution on longitudinal (sigma(y)) and transverse (sigma(x)) axes of models representing the composites with the highest and lowest E (FZ and HM, respectively) were evaluated by finite element analysis (FEA). Results. sigma(exp) ranged from 5.5 to 8.8 MPa in glass and from 2.6 to 3.4 MPa in PMMA. Composite ranking was not identical in both substrates, since FZ showed or sigma(exp) statistically higher than HM in glass, while in PMMA FZ showed values similar to the other composites. A strong correlation was found between stress reduction (%) from glass to PMMA and composite`s E (r(2) = 0.946). FEA revealed that system compliance was influenced by the composite (FZ led to higher compliance than HM). sigma(x) distribution was similar in both substrates, while cry distribution showed larger areas of compressive stresses in specimens built on PMMA. Significance. sigma(exp) determined in PMMA was 53-68% lower than in glass. Composite ranking varied slightly due to differences in substrates` longitudinal and transverse deformation. (c) 2007 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Background. Researchers have proposed the restoration of abfraction lesions, but limited information is available about the effects of occlusal loading on the margins of such restorations. Because abfraction is a well-recognized problem, the authors conducted a study to assess the effects of occlusal loading on the margins of cervical restorations. Methods. The authors prepared 40 wedge-shaped cavities in extracted premolars and restored them with a resin-based composite. They subjected specimens to occlusal loading (150 newtons, 101 cycles) on the buccal cusp, on the central fossa or on the lingual cusp, and they stored 1 the control group, specimens in deionized water. The authors used fluorescein to delimit marginal defects and evaluated the defects by using laser scanning confocal microscopy. Results. Results of chi(2) and Kruskal-Wallis tests (P < .05) showed that specimens subjected to occlusal loading had a higher percentage of marginal gaps (53.3 percent) than did the control specimens (10.0 percent). There were no differences between groups in marginal defect formation or in defect location, length or width. Conclusions. Occlusal loading led to a significant increase in gap formation at the margins of cervical resin-based composite restorations. Clinical Implications. The clinician cannot underestimate the effects of occlusal loading When restoring teeth with cervical wedge-shaped lesions. If occlusal loading is the main factor contributing to lesion formation, the clinician should identify and treat it before placing the restoration or otherwise run the risk that the restorative treatment will fail because of marginal gap formation.
Resumo:
There are many methods for the analysis and design of embedded cantilever retaining walls. They involve various different simplifications of the pressure distribution to allow calculation of the limiting equilibrium retained height and the bending moment when the retained height is less than the limiting equilibrium value, i.e. the serviceability case. Recently, a new method for determining the serviceability earth pressure and bending moment has been proposed. This method makes an assumption defining the point of zero net pressure. This assumption implies that the passive pressure is not fully mobilised immediately below the excavation level. The finite element analyses presented in this paper examine the net pressure distribution on walls in which the retained height is less, than the limiting equilibrium value. The study shows that for all practical walls, the earth pressure distributions on the front and back of the wall are at their limit values, Kp and K-a respectively, when the lumped factor of safety F-r is less than or equal to2.0. A rectilinear net pressure distribution is proposed that is intuitively logical. It produces good predictions of the complete bending moment diagram for walls in the service configuration and the proposed method gives results that have excellent agreement with centrifuge model tests. The study shows that the method for determining the serviceability bending moment suggested by Padfield and Mair(1) in the CIRIA Report 104 gives excellent predictions of the maximum bending moment in practical cantilever walls. It provides the missing data that have been needed to verify and justify the CIRIA 104 method.
Resumo:
Some efficient solution techniques for solving models of noncatalytic gas-solid and fluid-solid reactions are presented. These models include those with non-constant diffusivities for which the formulation reduces to that of a convection-diffusion problem. A singular perturbation problem results for such models in the presence of a large Thiele modulus, for which the classical numerical methods can present difficulties. For the convection-diffusion like case, the time-dependent partial differential equations are transformed by a semi-discrete Petrov-Galerkin finite element method into a system of ordinary differential equations of the initial-value type that can be readily solved. In the presence of a constant diffusivity, in slab geometry the convection-like terms are absent, and the combination of a fitted mesh finite difference method with a predictor-corrector method is used to solve the problem. Both the methods are found to converge, and general reaction rate forms can be treated. These methods are simple and highly efficient for arbitrary particle geometry and parameters, including a large Thiele modulus. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Solid earth simulations have recently been developed to address issues such as natural disasters, global environmental destruction and the conservation of natural resources. The simulation of solid earth phenomena involves the analysis of complex structures including strata, faults, and heterogeneous material properties. Simulation of the generation and cycle of earthquakes is particularly important, but such simulations require the analysis of complex fault dynamics. GeoFEM is a parallel finite-element analysis system intended for solid earth field phenomena problems. This paper describes recent development in the GeoFEM project for the simulation of earthquake generation and cycles.
Resumo:
O presente trabalho objetiva avaliar o desempenho do MECID (Método dos Elementos de Contorno com Interpolação Direta) para resolver o termo integral referente à inércia na Equação de Helmholtz e, deste modo, permitir a modelagem do Problema de Autovalor assim como calcular as frequências naturais, comparando-o com os resultados obtidos pelo MEF (Método dos Elementos Finitos), gerado pela Formulação Clássica de Galerkin. Em primeira instância, serão abordados alguns problemas governados pela equação de Poisson, possibilitando iniciar a comparação de desempenho entre os métodos numéricos aqui abordados. Os problemas resolvidos se aplicam em diferentes e importantes áreas da engenharia, como na transmissão de calor, no eletromagnetismo e em problemas elásticos particulares. Em termos numéricos, sabe-se das dificuldades existentes na aproximação precisa de distribuições mais complexas de cargas, fontes ou sorvedouros no interior do domínio para qualquer técnica de contorno. No entanto, este trabalho mostra que, apesar de tais dificuldades, o desempenho do Método dos Elementos de Contorno é superior, tanto no cálculo da variável básica, quanto na sua derivada. Para tanto, são resolvidos problemas bidimensionais referentes a membranas elásticas, esforços em barras devido ao peso próprio e problemas de determinação de frequências naturais em problemas acústicos em domínios fechados, dentre outros apresentados, utilizando malhas com diferentes graus de refinamento, além de elementos lineares com funções de bases radiais para o MECID e funções base de interpolação polinomial de grau (um) para o MEF. São geradas curvas de desempenho através do cálculo do erro médio percentual para cada malha, demonstrando a convergência e a precisão de cada método. Os resultados também são comparados com as soluções analíticas, quando disponíveis, para cada exemplo resolvido neste trabalho.
Resumo:
Polymers have become the reference material for high reliability and performance applications. In this work, a multi-scale approach is proposed to investigate the mechanical properties of polymeric based material under strain. To achieve a better understanding of phenomena occurring at the smaller scales, a coupling of a Finite Element Method (FEM) and Molecular Dynamics (MD) modeling in an iterative procedure was employed, enabling the prediction of the macroscopic constitutive response. As the mechanical response can be related to the local microstructure, which in turn depends on the nano-scale structure, the previous described multi-scale method computes the stress-strain relationship at every analysis point of the macro-structure by detailed modeling of the underlying micro- and meso-scale deformation phenomena. The proposed multi-scale approach can enable prediction of properties at the macroscale while taking into consideration phenomena that occur at the mesoscale, thus offering an increased potential accuracy compared to traditional methods.
Resumo:
Polymeric materials have become the reference material for high reliability and performance applications. However, their performance in service conditions is difficult to predict, due in large part to their inherent complex morphology, which leads to non-linear and anisotropic behavior, highly dependent on the thermomechanical environment under which it is processed. In this work, a multiscale approach is proposed to investigate the mechanical properties of polymeric-based material under strain. To achieve a better understanding of phenomena occurring at the smaller scales, the coupling of a finite element method (FEM) and molecular dynamics (MD) modeling, in an iterative procedure, was employed, enabling the prediction of the macroscopic constitutive response. As the mechanical response can be related to the local microstructure, which in turn depends on the nano-scale structure, this multiscale approach computes the stress-strain relationship at every analysis point of the macro-structure by detailed modeling of the underlying micro- and meso-scale deformation phenomena. The proposed multiscale approach can enable prediction of properties at the macroscale while taking into consideration phenomena that occur at the mesoscale, thus offering an increased potential accuracy compared to traditional methods.
Resumo:
A previously developed model is used to numerically simulate real clinical cases of the surgical correction of scoliosis. This model consists of one-dimensional finite elements with spatial deformation in which (i) the column is represented by its axis; (ii) the vertebrae are assumed to be rigid; and (iii) the deformability of the column is concentrated in springs that connect the successive rigid elements. The metallic rods used for the surgical correction are modeled by beam elements with linear elastic behavior. To obtain the forces at the connections between the metallic rods and the vertebrae geometrically, non-linear finite element analyses are performed. The tightening sequence determines the magnitude of the forces applied to the patient column, and it is desirable to keep those forces as small as possible. In this study, a Genetic Algorithm optimization is applied to this model in order to determine the sequence that minimizes the corrective forces applied during the surgery. This amounts to find the optimal permutation of integers 1, ... , n, n being the number of vertebrae involved. As such, we are faced with a combinatorial optimization problem isomorph to the Traveling Salesman Problem. The fitness evaluation requires one computing intensive Finite Element Analysis per candidate solution and, thus, a parallel implementation of the Genetic Algorithm is developed.
Resumo:
Este trabalho tem como objectivo a elaboração do projecto de estruturas de um edifício destinado a pavilhão gimnodesportivo, caracterizando as suas diferentes fases de execução, desde a etapa inicial de concepção até à fase final de dimensionamento. Trata-se de um projecto complexo de uma estrutura com elementos estruturais em betão armado e pré-esforçado, e com muros de contenção. Na concepção do edifício foram utilizados os critérios gerais de dimensionamento presentes na regulamentação Europeia (Eurocódigos), uma vez que estes elementos representam o futuro da regulamentação de estruturas em termos Europeus, vindo substituir a nível nacional o “Regulamento de Segurança e Acções para Estruturas de Betão Armado (RSA)” e o “Regulamento para Estruturas de Betão Armado e Pré- Esforçado (REBAP)”. A adopção das normas europeias representam assim um elevado desafio devido ao aumento da complexidade na concepção e dimensionamento de estruturas que estes regulamentos traduzem, principalmente o Eurocódigo 8, que define de um modo mais detalhado e complexo a análise sísmica, relativamente à regulamentação actual em vigor. Devido à elevada complexidade que os projectos de estruturas apresentam, utilizam-se actualmente ferramentas de cálculo automático. No dimensionamento deste edifício foi utilizado um programa tridimensional de elementos finitos para a modelação da estrutura. Pretende-se com a escolha deste projecto e dos métodos de dimensionamento presentes nos Eurocódigos, o desenvolvimento de um trabalho detalhado e correcto, permitindo assim adquirir conhecimentos importantes relativamente às futuras normas, e pôr em prática as competências e os conhecimentos obtidos ao longo curso.