772 resultados para fiber and waveguide optics
Resumo:
A new imaging methodology is described to visualise the post lens tear film (PLTF) during contact lens wear. A rotating-Scheimpflug camera in combination with sodium fluorescein allows evaluation of the PLTF for different contact lens modalities, including mini-scleral, rigid gas permeable (RGP) and soft contact lenses. This imaging technique provides an extension of the instrument’s current functionality. The potential advantages and limitations of the technique are discussed.
Resumo:
Purpose There have been only a limited number of studies examining the accommodative response that occurs when the two eyes are provided with disparate accommodative stimuli, and the results from these studies to date have been equivocal. In this study, we therefore aimed to examine the capacity of the visual system to aniso-accommodate by objectively measuring the interocular difference in the accommodation response between fellow dominant and non-dominant eyes under controlled monocular and binocular viewing conditions during short-term exposure to aniso-accommodative stimuli. Methods The accommodative response of each eye of sixteen young isometropic adults (mean age 22 ± 2 years) with normal binocular vision was measured using an open-field autorefractor during a range of testing conditions; monocularly (accommodative demands ranging from 1.32 to 4.55 D) and binocularly while altering the accommodation demand for each eye (aniso-accommodative stimuli ranging from 0.24 to 2.05 D). Results Under monocular viewing conditions, the dominant and non-dominant eyes displayed a highly symmetric accommodative response; mean interocular difference in spherical equivalent 0.01 ± 0.06 D (relative) and 0.22 ± 0.06 D (absolute) (p>0.05). During binocular viewing, the dominant eye displayed a greater accommodative response (0.11 ± 0.34 D relative and 0.24 ± 0.26 D absolute) irrespective of whether the demand of the dominant or non-dominant eye was altered (p = 0.01). Astigmatic power vectors J0 and J45 did not vary between eyes or with increasing accommodation demands under monocular or binocular viewing conditions (p>0.05). Conclusion The dominant and non-dominant eyes of young isometropic individuals display a similar consensual lag of accommodation under both monocular and binocular viewing conditions, with the dominant eye showing a small but significantly greater (by 0.12 to 0.25 D) accommodative response. Evidence of short-term aniso-accommodation in response to asymmetric accommodation demands was not observed.
Resumo:
PURPOSE To estimate refractive indices used by the Lenstar biometer to translate measured optical path lengths into geometrical path lengths within the eye. METHODS Axial lengths of model eyes were determined using the IOLMaster and Lenstar biometers; comparing those lengths gave an overall eye refractive index estimate for the Lenstar. Using the Lenstar Graphical User Interface, we noticed that boundaries between media could be manipulated and opposite changes in optical path lengths on either side of the boundary could be introduced. Those ratios were combined with the overall eye refractive index to estimate separate refractive indices. Furthermore, Haag-Streit provided us with a template to obtain 'air thicknesses' to compare with geometrical distances. RESULTS The axial length estimates obtained using the IOLMaster and the Lenstar agreed to within 0.01 mm. Estimates of group refractive indices used in the Lenstar were 1.340, 1.341, 1.415, and 1.354 for cornea, aqueous, lens, and overall eye, respectively. Those refractive indices did not match those of schematic eyes, but were close in the cases of aqueous and lens. Linear equations relating air thicknesses to geometrical thicknesses were consistent with our findings. CONCLUSION The Lenstar uses different refractive indices for different ocular media. Some of the refractive indices, such as that for the cornea, are not physiological; therefore, it is likely that the calibrations in the instrument correspond to instrument-specific corrections and are not the real optical path lengths.
Resumo:
A recent suggestion by a reviewer of a manuscript that the use of the word ‘hypermetropia’ was incorrect and that it should be replaced by ‘hyperopia’ caused us to look again at the literature of the subject to see if this criticism was justified. The background is an interesting one...
Resumo:
Increasing attention has been focused on methods that deliver pharmacologically active compounds (e.g. drugs, peptides and proteins) in a controlled fashion, so that constant, sustained, site-specific or pulsatile action can be attained. Ion-exchange resins have been widely studied in medical and pharmaceutical applications, including controlled drug delivery, leading to commercialisation of some resin based formulations. Ion-exchangers provide an efficient means to adjust and control drug delivery, as the electrostatic interactions enable precise control of the ion-exchange process and, thus, a more uniform and accurate control of drug release compared to systems that are based only on physical interactions. Unlike the resins, only few studies have been reported on ion-exchange fibers in drug delivery. However, the ion-exchange fibers have many advantageous properties compared to the conventional ion-exchange resins, such as more efficient compound loading into and release from the ion-exchanger, easier incorporation of drug-sized compounds, enhanced control of the ion-exchange process, better mechanical, chemical and thermal stability, and good formulation properties, which make the fibers attractive materials for controlled drug delivery systems. In this study, the factors affecting the nature and strength of the binding/loading of drug-sized model compounds into the ion-exchange fibers was evaluated comprehensively and, moreover, the controllability of subsequent drug release/delivery from the fibers was assessed by modifying the conditions of external solutions. Also the feasibility of ion-exchange fibers for simultaneous delivery of two drugs in combination was studied by dual loading. Donnan theory and theoretical modelling were applied to gain mechanistic understanding on these factors. The experimental results imply that incorporation of model compounds into the ion-exchange fibers was attained mainly as a result of ionic bonding, with additional contribution of non-specific interactions. Increasing the ion-exchange capacity of the fiber or decreasing the valence of loaded compounds increased the molar loading, while more efficient release of the compounds was observed consistently at conditions where the valence or concentration of the extracting counter-ion was increased. Donnan theory was capable of fully interpreting the ion-exchange equilibria and the theoretical modelling supported precisely the experimental observations. The physico-chemical characteristics (lipophilicity, hydrogen bonding ability) of the model compounds and the framework of the fibrous ion-exchanger influenced the affinity of the drugs towards the fibers and may, thus, affect both drug loading and release. It was concluded that precisely controlled drug delivery may be tailored for each compound, in particularly, by choosing a suitable ion-exchange fiber and optimizing the delivery system to take into account the external conditions, also when delivering two drugs simultaneously.
Resumo:
Purpose To explore the effect of small-aperture optics, designed to aid presbyopes by increasing ocular depth-of-focus, on measurements of the visual field. Methods Simple theoretical and ray-tracing models were used to predict the impact of different designs of small-aperture contact lenses or corneal inlays on the proportion of light passing through natural pupils of various diameters as a function of the direction in the visual field. The left eyes of five healthy volunteers were tested using three afocal, hand-painted opaque soft contact lenses (www.davidthomas.com). Two were opaque over a 10 mm diameter but had central clear circular apertures of 1.5 and 3.0 mm in diameter. The third had an annular opaque zone with inner and outer diameters of 1.5 and 4.0 mm, approximately simulating the geometry of the KAMRA inlay (www.acufocus.com). A fourth, clear lens was used for comparison purposes. Visual fields along the horizontal meridian were evaluated up to 50° eccentricity with static automated perimetry (Medmont M700, stimulus Goldmann-size III; www.medmont.com). Results According to ray-tracing, the two lenses with the circular apertures were expected to reduce the relative transmittance of the pupil to zero at specific field angles (around 60° for the conditions of the experimental measurements). In contrast, the annular stop had no effect on the absolute field but relative transmittance was reduced over the central area of the field, the exact effects depending upon the natural pupil diameter. Experimental results broadly agreed with these theoretical expectations. With the 1.5 and 3.0 mm pupils, only minor losses in sensitivity (around 2 dB) in comparison with the clear-lens case occurred across the central 10° radius of field. Beyond this angle, sensitivity losses increased, to reach about 7 dB at the edge of the measured field (50°). The field results with the annular stop showed at most only a slight loss in sensitivity (≤3 dB) across the measured field. Conclusion The present theoretical and experimental results support earlier clinical findings that KAMRA-type annular stops, unlike circular artificial pupils, have only minor effects on measurements of the visual field.
Resumo:
Coupled electromagnetically induced transparency (EIT) has been observed with a dual mode control laser. The technique can be used for generating EIT-comb from optical frequency comb.
Resumo:
A methodology using sensitivity analysis is proposed to measure the effective permeability which includes the interaction of the resin and the reinforcement. Initially, mold-filling experiments were performed at isothermal conditions on the test specimen and the positions of the flow front were tracked with time using a flow visualization method. Following this, mold-filling experiments were simulated using a commercial software to obtain the positions of the flow front with time at the process conditions used for experiments. Several iterations were performed using different trial values of the permeability until the experimentally tracked and simulated positions of the flow front with time were matched. Finally, the value of the permeability thus obtained was validated by comparing the positions obtained by performing the experiments at different process conditions with the positions obtained by simulating the experiments. In this study, woven roving and chopped strand mats of E-class glass fiber and unsaturated polyester resin were used for the experiments. From the results, it was found that the measured permeabilities were consistent with varying process conditions. POLYM. COMPOS., 2012. (c) 2012 Society of Plastics Engineers
Resumo:
In this paper we will be presenting the effect of fluidic gap, the effect of change of refractive index of the fluid contained in the gap, and the effect of higher order modes on the efficiency of light coupling and thus on the on the sensitivity of the sensor.
Resumo:
In this paper we will be presenting the effect of fluidic gap, the effect of change of refractive index of the fluid contained in the gap, and the effect of higher order modes on the efficiency of light coupling and thus on the on the sensitivity of the sensor.
Resumo:
Optical transport behavior of organic photo-voltaic devices with nano-pillar transparent electrodes is investigated in this paper in order to understand possible enhancement of their charge-collection efficiency. Modeling and simulations of optical transport due to this architecture show an interesting regime of length-scale dependent optical characteristics. An electromagnetic wave propagation model is employed with simulation objectives toward understanding the mechanism of optical scattering and waveguide effects due to the nano-pillars and effective transmission through the active layer. Partial filling of gaps between the nano-pillars due to the nano-fabrication process is taken into consideration. Observations made in this paper will facilitate appropriate design rules for nano-pillar electrodes. (C) 2014 AIP Publishing LLC.
Resumo:
The irradiation of selective regions in a polymer gel dosimeter results in an increase in optical density and refractive index (RI) at those regions. An optical tomography-based dosimeter depends on rayline path through the dosimeter to estimate and reconstruct the dose distribution. The refraction of light passing through a dose region results in artefacts in the reconstructed images. These refraction errors are dependant on the scanning geometry and collection optics. We developed a fully 3D image reconstruction algorithm, algebraic reconstruction technique-refraction correction (ART-rc) that corrects for the refractive index mismatches present in a gel dosimeter scanner not only at the boundary, but also for any rayline refraction due to multiple dose regions inside the dosimeter. In this study, simulation and experimental studies have been carried out to reconstruct a 3D dose volume using 2D CCD measurements taken for various views. The study also focuses on the effectiveness of using different refractive-index matching media surrounding the gel dosimeter. Since the optical density is assumed to be low for a dosimeter, the filtered backprojection is routinely used for reconstruction. We carry out the reconstructions using conventional algebraic reconstruction (ART) and refractive index corrected ART (ART-rc) algorithms. The reconstructions based on FDK algorithm for cone-beam tomography has also been carried out for comparison. Line scanners and point detectors, are used to obtain reconstructions plane by plane. The rays passing through dose region with a RI mismatch does not reach the detector in the same plane depending on the angle of incidence and RI. In the fully 3D scanning setup using 2D array detectors, light rays that undergo refraction are still collected and hence can still be accounted for in the reconstruction algorithm. It is found that, for the central region of the dosimeter, the usable radius using ART-rc algorithm with water as RI matched medium is 71.8%, an increase of 6.4% compared to that achieved using conventional ART algorithm. Smaller diameter dosimeters are scanned with dry air scanning by using a wide-angle lens that collects refracted light. The images reconstructed using cone beam geometry is seen to deteriorate in some planes as those regions are not scanned. Refraction correction is important and needs to be taken in to consideration to achieve quantitatively accurate dose reconstructions. Refraction modeling is crucial in array based scanners as it is not possible to identify refracted rays in the sinogram space.
Resumo:
We report on the fabrication and observation of emergent opto-electronic phenomena in three dimensional, micron-sized van der Waals heterostructures self-assembled from atomic layers of graphene and hexagonal boron nitride in varying ratios.
Resumo:
One of the key technologies to evolve in the displays market in recent years is liquid crystal over silicon (LCOS) microdisplays. Traditional LCOS devices and applications such as rear projection televisions, have been based on intensity modulation electro-optical effects, however, recent developments have shown that multi-level phase modulation from these devices is extremely sought after for applications such as holographic projectors, optical correlators and adaptive optics. Here, we propose alternative device geometry based on the flexoelectric-optic effect in a chiral nematic liquid crystal. This device is capable of delivering a multilevel phase shift at response times less than 100 microsec which has been verified by phase shift interferometry using an LCOS test device. The flexoelectric on silicon device, due to its remarkable characteristics, enables the next generation of holographic devices to be realized.