924 resultados para exponential decay
Resumo:
Erbium activated SiO2 -HfO2 planar waveguides, doped with Er3+ concentrations ranging from 0.01 to 4 mol%, were prepared by sol-gel method. The films were deposited on v-SiO2 and silica-on-silicon substrates using dip-coating technique. The waveguides show high densification degree, effective intermingling of the two film components, and uniform surface morphology. The waveguide deposited on silica-on-silicon substrates shows one single propagation mode at 1.5μm, with a confinement coefficient of 0.81 and an attenuation coefficient of 0.8 dB/cm at 632.8nm. Emission in the C-telecommunication band was observed at room temperature for all the samples upon continuouswave excitation at 980 nm or 514.5 nm. The shape of the emission band corresponding to the 4I13/2 → 4I15/2 transition is found to be almost independent both on erbium content and excitation wavelength, with a FWHM between 44 and 48 nm. The 4I13/2 level decay curves presented a single-exponential profile, with a lifetime ranging between 1.1 - 6.6 ms, depending on the erbium concentration. Infrared to visible upconversion luminescence upon continuous-wave excitation at 980 nm was observed for all the samples. Channel waveguide in rib configuration was obtained by etching the active film in order to have a well confined mode at 1.5 μm.
Resumo:
70SiO2 - 30HfO2 planar waveguides, activated by Er3+ concentration ranging from 0.3 to 1 mol%, were prepared by solgel route, using dip-coating deposition on silica glass substrates. The waveguides showed high densification degree, effective intermingling of the two components of the film, and uniform surface morphology. Propagation losses of about 1 dB/cm were measured at 632.8 nm. When pumped with 987 nm or 514.5 nm continuous-wave laser light, the waveguides showed the 4I 13/2→4I15/2 emission band with a bandwidth of 48 nm. The spectral features were found independent both on erbium content and excitation wavelength. The 4I13/2 level decay curves presented a single exponential profile, with a lifetime between 2.9-5.0 ms, depending on the erbium concentration.
Resumo:
We present the results of a search for the flavor-changing neutral current decay Bs 0 → μ+ μ-. using a data set with integrated luminosity of 240 pb-1 of pp̄ collisions at √s = 1.96 TeV collected with the D0 detector in run II of the Fermilab Tevatron collider. We find the upper limit on the branching fraction to be B(Bs 0 → μ+ π-) ≤ 5.0 × 10-7 at the 95% C.L. assuming no contributions from the decay Bd 0 → μ+ μ- in the signal region. This limit is the most stringent upper bound on the branching fraction Bs 0 → μ+ μ- to date. © 2005 The American Physical Society.
Resumo:
Under biotic/abiotic stresses, the red alga Kappaphycus alvarezii reportedly releases massive amounts of H2O2 into the surrounding seawater. As an essential redox signal, the role of chloroplast-originated H2O2 in the orchestration of overall antioxidant responses in algal species has thus been questioned. This work purported to study the kinetic decay profiles of the redox-sensitive plastoquinone pool correlated to H2O2 release in seawater, parameters of oxidative lesions and antioxidant enzyme activities in the red alga Kappaphycus alvarezii under the single or combined effects of high light, low temperature, and sub-lethal doses of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), which are inhibitors of the thylakoid electron transport system. Within 24 h, high light and chilling stresses distinctly affected the availability of the PQ pool for photosynthesis, following Gaussian and exponential kinetic profiles, respectively, whereas combined stimuli were mostly reflected in exponential decays. No significant correlation was found in a comparison of the PQ pool levels after 24 h with either catalase (CAT) or ascorbate peroxidase (APX) activities, although the H2O2 concentration in seawater (R = 0.673), total superoxide dismutase activity (R = 0.689), and particularly indexes of protein (R = 0.869) and lipid oxidation (R = 0.864), were moderately correlated. These data suggest that the release of H2O2 from plastids into seawater possibly impaired efficient and immediate responses of pivotal H2O2-scavenging activities of CAT and APX in the red alga K. alvarezii, culminating in short-term exacerbated levels of protein and lipid oxidation. These facts provided a molecular basis for the recognized limited resistance of the red alga K. alvarezii under unfavorable conditions, especially under chilling stress. © 2006 Elsevier B.V. All rights reserved.
Resumo:
We present general explicit expressions for a shell-model calculation of the vector hypernuclear parameter in nonmesonic weak decay. We use a widely accepted effective coupling Hamiltonian involving the exchange of the complete pseudoscalar and vector meson octets (π, η, K, ρ, ω, K*). In contrast to the approximated formula widely used in the literature, we correctly treat the contribution of transitions originated from single-proton states beyond the s-shell. Exact and simple analytical expressions are obtained for the particular cases of Λ 5He and Λ 12C, within the one-pion-exchange model. Numerical computations of the asymmetry parameter, aΛ, are presented. Our results show a qualitative agreement with other theoretical estimates but also a contradiction with recent experimental determinations. Our simple analytical formulas provide a guide in searching the origin of such discrepancies, and they will be useful for helping to solve the hypernuclear weak decay puzzle.
Resumo:
A fully reconstructed Bc→J/ψπ signal is observed with the D0 detector at the Fermilab Tevatron pp̄ collider using 1.3fb-1 of integrated luminosity. The signal consists of 54±12 candidates with a significance that exceeds 5 standard deviations, and confirms earlier observations of this decay. The measured mass of the Bc meson is 6300±14(stat)±5(syst) MeV/c2. © 2008 The American Physical Society.
Resumo:
We report the results of a search for a narrow resonance decaying into two photons in 1.1fb-1 of data collected by the D0 experiment at the Fermilab Tevatron Collider during the period 20022006. We find no evidence for such a resonance and set a lower limit on the mass of a fermiophobic Higgs boson of mhf>100GeV at the 95% C.L. This exclusion limit exceeds those obtained in previous searches at the Fermilab Tevatron and covers a significant region of the parameter space B(hf→I I ) vs mhf which was not accessible at the CERN Large Electron-Positron Collider. © 2008 The American Physical Society.
Resumo:
Nowadays, one of the most important concerns for many companies is to maintain the operation of their systems without sudden equipment break down. Because of this, new techniques for fault detection and location in mechanical systems subject to dynamic loads have been developed. This paper studies of the influence of the decay rate in the design of state observers using LMI for fault detection in mechanical systems. This influence is analyzed by the performance index proposed by Huh and Stein for the condition of a state observer. An example is presented to illustrate the methodology discussed.
Resumo:
After a short introduction to the nonmesonic weak decay (NMWD) ΛN→nN of Λ-hypernuclei we discuss the long-standing puzzle on the ratio Γn/Γp, and some recent experimental evidences that signalized towards its final solution. Two versions of the Independent-Particle-Shell-Model (IPSM) are employed to account for the nuclear structure of the final residual nuclei. They are: (a) IPSM-a, where no correlation, except for the Pauli principle, is taken into account, and (b) IPSM-b, where the highly excited hole states are considered to be quasi-stationary and are described by Breit-Wigner distributions, whose widths are estimated from the experimental data. We evaluate the coincidence spectra in Λ 4He, Λ 5He, Λ 12C, Λ 16O, and Λ 28Si, as a function of the sum of kinetic energies EnN=En+EN for N=n, p. The recent Brookhaven National Laboratory experiment E788 on Λ 4He, is interpreted within the IPSM. We found that the shapes of all the spectra are basically tailored by the kinematics of the corresponding phase space, depending very weakly on the dynamics, which is gauged here by the one-meson-exchange- potential. In spite of the straightforwardness of the approach a good agreement with data is achieved. This might be an indication that the final-state- interactions and the two-nucleon induced processes are not very important in the decay of this hypernucleus. We have also found that the π+K exchange potential with soft vertex-form-factor cutoffs (Λπ≈0. 7GeV, ΛK≈0.9GeV), is able to account simultaneously for the available experimental data related to Γp and Γn for Λ 4H, and Λ 5He. © 2010 American Institute of Physics.
Resumo:
A challenge in mesonic three-body decays of heavy mesons is to quantify the contribution of re-scattering between the final mesons. D decays have the unique feature that make them a key to light meson spectroscopy, in particular to access the Kn S-wave phase-shifts. We built a relativis-tic three-body model for the final state interaction in D+ → K -π+π+ decay based on the ladder approximation of the Bethe-Salpeter equation projected on the light-front. The decay amplitude is separated in a smooth term, given by the direct partonic decay amplitude, and a three-body fully interacting contribution, that is factorized in the standard two-meson resonant amplitude times a reduced complex amplitude that carries the effect of the three-body rescattering mechanism. The off-shell reduced amplitude is a solution of an inhomogeneous Faddeev type three-dimensional integral equation, that includes only isospin 1/2 K -π+ interaction in the S-wave channel. The elastic K-π+ scattering amplitude is parameterized according to the LASS data[1]. The integral equation is solved numerically and preliminary results are presented and compared to the experimental data from the E791 Collaboration[2, 3] and FOCUS Collaboration[4, 5].
Resumo:
In this paper we proposed a new two-parameters lifetime distribution with increasing failure rate. The new distribution arises on a latent complementary risk problem base. The properties of the proposed distribution are discussed, including a formal proof of its probability density function and explicit algebraic formulae for its reliability and failure rate functions, quantiles and moments, including the mean and variance. A simple EM-type algorithm for iteratively computing maximum likelihood estimates is presented. The Fisher information matrix is derived analytically in order to obtaining the asymptotic covariance matrix. The methodology is illustrated on a real data set. © 2010 Elsevier B.V. All rights reserved.
Resumo:
We measure the Λb0 lifetime in the fully reconstructed decay Λb0→J/ψΛ0 using 10.4fb -1 of pp̄ collisions collected with the D0 detector at √s=1.96TeV. The lifetime of the topologically similar decay channel B0→J/ψKS0 is also measured. We obtain τ(Λb0)=1.303±0.075(stat)±0.035(syst)ps and τ(B0)=1.508±0.025(stat)±0.043(syst)ps. Using these measurements, we determine the lifetime ratio of τ(Λb0)/τ(B0)=0. 864±0.052(stat)±0.033(syst). © 2012 American Physical Society.
Resumo:
Using data collected with the D0 detector at the Fermilab Tevatron Collider, corresponding to 5.3fb -1 of integrated luminosity, we search for violation of Lorentz invariance by examining the tt̄ production cross section in lepton+jets final states. We quantify this violation using the standard-model extension framework, which predicts a dependence of the tt̄ production cross section on sidereal time as the orientation of the detector changes with the rotation of the Earth. Within this framework, we measure components of the matrices (c Q) μν33 and (c U) μν33 containing coefficients used to parametrize violation of Lorentz invariance in the top quark sector. Within uncertainties, these coefficients are found to be consistent with zero. © 2012 American Physical Society.
Resumo:
The control of post-harvest fungal decay on guava (Psidium guajava L. 'Pedro Sato') stored under low oxygen controlled atmosphere (5 kPa) was compared with increasing concentrations of carbon dioxide in the atmospheres. The combination of high concentrations of carbon dioxide (1, 5, 10, 15 and 20 kPa) with low oxygen (5 kPa) did not result in additional decay control. The low oxygen level (5 kPa) was the main factor for controlling post-harvest fungal development which resulted in a very low percentage of fruits with symptoms of anthracnose and stylar end rot throughout cold storage, regardless of the CO2 concentration. After transfer to ambient conditions, only the atmospheres with 5 kPa O2 (control), 5 kPa O2 + 1 kPa CO2 and 5 kPa O2 + 5 kPa CO2 resulted in reduced incidence of stylar end rot (P<0.05). There was not a significant interaction among CA combinations and storage duration on the percentage and number of typical anthracnose lesions.
Resumo:
This paper deals with exponential stability of discrete-time singular systems with Markov jump parameters. We propose a set of coupled generalized Lyapunov equations (CGLE) that provides sufficient conditions to check this property for this class of systems. A method for solving the obtained CGLE is also presented, based on iterations of standard singular Lyapunov equations. We present also a numerical example to illustrate the effectiveness of the approach we are proposing.