913 resultados para essential oils,
Resumo:
Members of the human APOBEC3 family of editing enzymes can inhibit various mobile genetic elements. APOBEC3A (A3A) can block the retrotransposon LINE-1 and the parvovirus adeno-associated virus type 2 (AAV-2) but does not inhibit retroviruses. In contrast, APOBEC3G (A3G) can block retroviruses but has only limited effects on AAV-2 or LINE-1. What dictates this differential target specificity remains largely undefined. Here, we modeled the structure of A3A based on its homology with the C-terminal domain of A3G and further compared the sequence of human A3A to those of 11 nonhuman primate orthologues. We then used these data to perform a mutational analysis of A3A, examining its ability to restrict LINE-1, AAV-2, and foreign plasmid DNA and to edit a single-stranded DNA substrate. The results revealed an essential functional role for the predicted single-stranded DNA-docking groove located around the A3A catalytic site. Within this region, amino acid differences between A3A and A3G are predicted to affect the shape of the polynucleotide-binding groove. Correspondingly, transferring some of these A3A residues to A3G endows the latter protein with the ability to block LINE-1 and AAV-2. These results suggest that the target specificity of APOBEC3 family members is partly defined by structural features influencing their interaction with polynucleotide substrates.
Resumo:
The orphan receptor CRF2-4 is a member of the class II cytokine receptor family (CRF2), which includes the interferon receptors, the interleukin (IL) 10 receptor, and tissue factor. CRFB4, the gene encoding CRF2-4, is located within a gene cluster on human chromosome 21 that comprises three interferon receptor subunits. To elucidate the role of CRF2-4, we disrupted the CRFB4 gene in mice by means of homologous recombination. Mice lacking CRF2-4 show no overt abnormalities, grow normally, and are fertile. CRF2-4 deficient cells are normally responsive to type I and type II interferons, but lack responsiveness to IL-10. By approximately 12 wk of age, the majority of mutant mice raised in a conventional facility developed a chronic colitis and splenomegaly. Thus, CRFB4 mutant mice recapitulate the phenotype of IL-10-deficient mice. These findings suggest that CRF2-4 is essential for IL-10-mediated effects and is a subunit of the IL-10 receptor.
Resumo:
BACKGROUND: A high dietary protein intake has been shown to blunt the deposition of intrahepatic lipids in high-fat- and high-carbohydrate-fed rodents and humans. OBJECTIVE: The aim of this study was to evaluate the effect of essential amino acid supplementation on the increase in hepatic fat content induced by a high-fructose diet in healthy subjects. DESIGN: Nine healthy male volunteers were studied on 3 occasions in a randomized, crossover design after 6 d of dietary intervention. Dietary conditions consisted of a weight-maintenance balanced diet (control) or the same balanced diet supplemented with 3 g fructose · kg(-1) · d(-1) and 6.77 g of a mixture of 5 essential amino acids 3 times/d (leucine, isoleucine, valine, lysine, and threonine) (HFrAA) or with 3 g fructose · kg(-1) · d(-1) and a maltodextrin placebo 3 times/d (HFr); there was a washout period of 4 to 10 wk between each condition. For each condition, the intrahepatocellular lipid (IHCL) concentration, VLDL-triglyceride concentration, and VLDL-[(13)C]palmitate production were measured after oral loading with [(13)C]fructose. RESULTS: HFr increased the IHCL content (1.27 ± 0.31 compared with 2.74 ± 0.55 vol %; P < 0.05) and VLDL-triglyceride (0.55 ± 0.06 compared with 1.40 ± 0.15 mmol/L; P < 0.05). HFr also enhanced VLDL-[(13)C]palmitate production. HFrAA significantly decreased IHCL compared with HFr (to 2.30 ± 0.43 vol%; P < 0.05) but did not change VLDL-triglyceride concentrations or VLDL-[(13)C]palmitate production. CONCLUSIONS: Supplementation with essential amino acids blunts the fructose-induced increase in IHCL but not hypertriglyceridemia. This is not because of inhibition of VLDL-[(13)C]palmitate production. This trial was registered at www.clinicaltrials.gov as NCT01119989.
Resumo:
Engagement of TNF receptor 1 by TNFalpha activates the transcription factor NF-kappaB but can also induce apoptosis. Here we show that upon TNFalpha binding, TNFR1 translocates to cholesterol- and sphingolipid-enriched membrane microdomains, termed lipid rafts, where it associates with the Ser/Thr kinase RIP and the adaptor proteins TRADD and TRAF2, forming a signaling complex. In lipid rafts, TNFR1 and RIP are ubiquitylated. Furthermore, we provide evidence that translocation to lipid rafts precedes ubiquitylation, which leads to the degradation via the proteasome pathway. Interfering with lipid raft organization not only abolishes ubiquitylation but switches TNFalpha signaling from NF-kappaB activation to apoptosis. We suggest that lipid rafts are crucial for the outcome of TNFalpha-activated signaling pathways.
Resumo:
The hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp), represented by nonstructural protein 5B (NS5B), belongs to a class of integral membrane proteins termed tail-anchored proteins. Its membrane association is mediated by the C-terminal 21 amino acid residues, which are dispensable for RdRp activity in vitro. For this study, we investigated the role of this domain, termed the insertion sequence, in HCV RNA replication in cells. Based on a structural model and the amino acid conservation among different HCV isolates, we designed a panel of insertion sequence mutants and analyzed their membrane association and RNA replication. Subgenomic replicons with a duplication of an essential cis-acting replication element overlapping the sequence that encodes the C-terminal domain of NS5B were used to unequivocally distinguish RNA versus protein effects of these mutations. Our results demonstrate that the membrane association of the RdRp is essential for HCV RNA replication. Interestingly, certain amino acid substitutions within the insertion sequence abolished RNA replication without affecting membrane association, indicating that the C-terminal domain of NS5B has functions beyond serving as a membrane anchor and that it may be involved in critical intramembrane protein-protein interactions. These results have implications for the functional architecture of the HCV replication complex and provide new insights into the expanding spectrum of tail-anchored proteins.
Resumo:
Background: GTF2I codes for a general intrinsic transcription factor and calcium channel regulator TFII-I, with high and ubiquitous expression, and a strong candidate for involvement in the morphological and neuro-developmental anomalies of the Williams-Beuren syndrome (WBS). WBS is a genetic disorder due to a recurring deletion of about 1,55-1,83 Mb containing 25-28 genes in chromosome band 7q11.23 including GTF2I. Completed homozygous loss of either the Gtf2i or Gtf2ird1 function in mice provided additional evidence for the involvement of both genes in the craniofacial and cognitive phenotype. Unfortunately nothing is now about the behavioral characterization of heterozygous mice. Methods: By gene targeting we have generated a mutant mice with a deletion of the first 140 amino-acids of TFII-I. mRNA and protein expression analysis were used to document the effect of the study deletion. We performed behavioral characterization of heterozygous mutant mice to document in vivo implications of TFII-I in the cognitive profile of WBS patients. Results: Homozygous and heterozygous mutant mice exhibit craniofacial alterations, most clearly represented in homozygous condition. Behavioral test demonstrate that heterozygous mutant mice exhibit some neurobehavioral alterations and hyperacusis or odynacusis that could be associated with specific features of WBS phenotype. Homozygous mutant mice present highly compromised embryonic viability and fertility. Regarding cellular model, we documented a retarded growth in heterozygous MEFs respect to homozygous or wild-type MEFs. Conclusion: Our data confirm that, although additive effects of haploinsufficiency at several genes may contribute to the full craniofacial or neurocognitive features of WBS, correct expression of GTF2I is one of the main players. In addition, these findings show that the deletion of the fist 140 amino-acids of TFII-I altered it correct function leading to a clear phenotype, at both levels, at the cellular model and at the in vivo model.
Resumo:
Peroxiredoxins are known to interact with hydrogen peroxide (H2O2) and to participate in oxidant scavenging, redox signal transduction, and heat-shock responses. The two-cysteine peroxiredoxin Tpx1 of Schizosaccharomyces pombe has been characterized as the H2O2 sensor that transduces the redox signal to the transcription factor Pap1. Here, we show that Tpx1 is essential for aerobic, but not anaerobic, growth. We demonstrate that Tpx1 has an exquisite sensitivity for its substrate, which explains its participation in maintaining low steady-state levels of H2O2. We also show in vitro and in vivo that inactivation of Tpx1 by oxidation of its catalytic cysteine to a sulfinic acid is always preceded by a sulfinic acid form in a covalently linked dimer, which may be important for understanding the kinetics of Tpx1 inactivation. Furthermore, we provide evidence that a strain expressing Tpx1.C169S, lacking the resolving cysteine, can sustain aerobic growth, and we show that small reductants can modulate the activity of the mutant protein in vitro, probably by supplying a thiol group to substitute for cysteine 169.
Resumo:
Hypertension is a common heritable cardiovascular risk factor. Some rare monogenic forms of hypertension have been described, but the majority of patients suffer from essential hypertension, for whom the underlying genetic mechanisms are not clear. Essential hypertension is a complex trait, involving multiple genes and environmental factors. Recently, progress in the identification of common genetic variants associated with essential hypertension has been made due to large-scale international collaborative projects. In this article we review the new research methods used as well as selected recent findings in this field.
Resumo:
As an approved vaccine adjuvant for use in humans, alum has vast health implications, but, as it is a crystal, questions remain regarding its mechanism. Furthermore, little is known about the target cells, receptors, and signaling pathways engaged by alum. Here we report that, independent of inflammasome and membrane proteins, alum binds dendritic cell (DC) plasma membrane lipids with substantial force. Subsequent lipid sorting activates an abortive phagocytic response that leads to antigen uptake. Such activated DCs, without further association with alum, show high affinity and stable binding with CD4(+) T cells via the adhesion molecules intercellular adhesion molecule-1 (ICAM-1) and lymphocyte function-associated antigen-1 (LFA-1). We propose that alum triggers DC responses by altering membrane lipid structures. This study therefore suggests an unexpected mechanism for how this crystalline structure interacts with the immune system and how the DC plasma membrane may behave as a general sensor for solid structures.
Resumo:
An easy-living home requires a full-sized bathroom on the main level. Family members will appreciate the extra space and guests of all ages and abilities will feel more welcome. At a minimum, you’ll need a five foot circle of open floor space for maneuvering a wheelchair between bathroom fixtures. A small powder room won’t work for guests who use walkers or wheelchairs. A shower stall—with no curb to step over—is more convenient than a tub for most guests. Make sure the doorway opening for the bathroom is at least 32 inches wide (preferably 36 inches). Universal design features, such as these, make homes better for everyone.
Resumo:
Exocytosis from synaptic vesicles is driven by stepwise formation of a tight alpha-helical complex between the fusing membranes. The complex is composed of the three SNAREs: synaptobrevin 2, SNAP-25, and syntaxin 1a. An important step in complex formation is fast binding of vesicular synaptobrevin to the preformed syntaxin 1.SNAP-25 dimer. Exactly how this step relates to neurotransmitter release is not well understood. Here, we combined different approaches to gain insights into this reaction. Using computational methods, we identified a stretch in synaptobrevin 2 that may function as a coiled coil "trigger site." This site is also present in many synaptobrevin homologs functioning in other trafficking steps. Point mutations in this stretch inhibited binding to the syntaxin 1.SNAP-25 dimer and slowed fusion of liposomes. Moreover, the point mutations severely inhibited secretion from chromaffin cells. Altogether, this demonstrates that the trigger site in synaptobrevin is crucial for productive SNARE zippering.
Resumo:
BACKGROUND: Analysis of the first reported complete genome sequence of Bifidobacterium longum NCC2705, an actinobacterium colonizing the gastrointestinal tract, uncovered its proteomic relatedness to Streptomyces coelicolor and Mycobacterium tuberculosis. However, a rapid scrutiny by genometric methods revealed a genome organization totally different from all so far sequenced high-GC Gram-positive chromosomes. RESULTS: Generally, the cumulative GC- and ORF orientation skew curves of prokaryotic genomes consist of two linear segments of opposite slope: the minimum and the maximum of the curves correspond to the origin and the terminus of chromosome replication, respectively. However, analyses of the B. longum NCC2705 chromosome yielded six, instead of two, linear segments, while its dnaA locus, usually associated with the origin of replication, was not located at the minimum of the curves. Furthermore, the coorientation of gene transcription with replication was very low. Comparison with closely related actinobacteria strongly suggested that the chromosome of B. longum was misassembled, and the identification of two pairs of relatively long homologous DNA sequences offers the possibility for an alternative genome assembly proposed here below. By genometric criteria, this configuration displays all of the characters common to bacteria, in particular to related high-GC Gram-positives. In addition, it is compatible with the partially sequenced genome of DJO10A B. longum strain. Recently, a corrected sequence of B. longum NCC2705, with a configuration similar to the one proposed here below, has been deposited in GenBank, confirming our predictions. CONCLUSION: Genometric analyses, in conjunction with standard bioinformatic tools and knowledge of bacterial chromosome architecture, represent fast and straightforward methods for the evaluation of chromosome assembly.
Resumo:
INTRODUCTION: Tissue factor (TF) activation of the coagulation proteases enhances inflammation in animal models of arthritis and endotoxemia, but the mechanism of this effect is not yet fully understood - in particular, whether this is primarily due to fibrin formation or through activation of protease activated receptors (PARs). METHODS: We induced extravascular inflammation by injection of recombinant soluble murine TF (sTF1-219) in the hind paw. The effects of thrombin inhibition, fibrinogen and platelet depletion were evaluated, as well as the effects of PAR deficiency using knockout mice deficient for each of the PARs. RESULTS: Injection of soluble TF provoked a rapid onset of paw swelling. Inflammation was confirmed histologically and by increased serum IL-6 levels. Inflammation was significantly reduced by depletion of fibrinogen (P < 0.05) or platelets (P = 0.015), and by treatment with hirudin (P = 0.04) or an inhibitor of activated factor VII (P < 0.001) compared with controls. PAR-4-deficient mice exhibited significantly reduced paw swelling (P = 0.003). In contrast, a deficiency in either PAR-1, PAR-2 or PAR-3 did not affect the inflammatory response to soluble TF injection. CONCLUSION: Our results show that soluble TF induces acute inflammation through a thrombin-dependent pathway and both fibrin deposition and platelet activation are essential steps in this process. The activation of PAR-4 on platelets is crucial and the other PARs do not play a major role in soluble TF-induced inflammation.
Resumo:
Essential tremor (ET) is a prevalent condition manifesting with progressive action tremor. Although ET was traditionally viewed as a sporadic disease, a significant proportion of cases report a positive family history of tremor. Autosomal dominant inheritance can be demonstrated in many families. Previously, genome-wide linkage studies in families mapped three loci for ET, hereditary essential tremor-1 (ETM1), ETM2 and ETM3. However, no causal mutation has been replicated in candidate genes within these loci, including dopamine D3 receptor (DRD3) and HS1-binding protein 3 (HS1BP3). Recently, the first genome-wide association study in ET followed by replication studies conducted in diverse populations identified a significant association between the leucine-rich repeat and Ig domain containing 1 gene (LINGO1) SNP rs9652490 and risk for ET Although further novel variants were indentified in LINGO1 and its paralog LINGO2 that may be associated with risk for ET, the pathogenic mechanisms involved remain elusive. Given the possibility that ET as a complex trait may be influenced by the combined effects of rare variants, novel high-throughput technologies sequencing all exons across the genome (exome sequencing) or the whole genome (genome sequencing) may become crucial in understanding/deciphering the genetic background of ET.