882 resultados para energy requirement model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study is a survey of benefits and drawbacks of embedding a variable gearbox instead of a single reduction gear in electric vehicle powertrain from efficiency point of view. Losses due to a pair of spur gears meshing with involute teeth are modeled on the base of Coulomb’s law and fluid mechanics. The model for a variable gearbox is fulfilled and further employed in a complete vehicle simulation. Simulation model run for a single reduction gear then the results are taken as benchmark for other types of commonly used transmissions. Comparing power consumption, which is obtained from simulation model, shows that the extra load imposed by variable transmission components will shade the benefits of efficient operation of electric motor. The other accomplishment of this study is a combination of modified formulas that led to a new methodology for power loss prediction in gear meshing which is compatible with modern design and manufacturing technology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biotechnology has been recognized as the key strategic technology for industrial growth. The industry is heavily dependent on basic research. Finland continues to rank in the top 10 of Europe's most innovative countries in terms of tax-policy, education system, infrastructure and the number of patents issued. Regardless of the excellent statistical results, the output of this innovativeness is below acceptable. Research on the issues hindering the output creation has already been done and the identifiable weaknesses in the Finland's National Innovation system are the non-existent growth of entrepreneurship and the missing internationalization. Finland is proven to have all the enablers of the innovation policy tools, but is lacking the incentives and rewards to push the enablers, such as knowledge and human capital, forward. Science Parks are the biggest operator in research institutes in the Finnish Science and Technology system. They exist with the purpose of speeding up the commercialization process of biotechnology innovations which usually include technological uncertainty, technical inexperience, business inexperience and high technology cost. Innovation management only internally is a rather historic approach, current trend drives towards open innovation model with strong triple helix linkages. The evident problems in the innovation management within the biotechnology industry are examined through a case study approach including analysis of the semi-structured interviews which included biotechnology and business expertise from Turku School of Economics. The results from the interviews supported the theoretical implications as well as conclusions derived from the pilot survey, which focused on the companies inside Turku Science Park network. One major issue that the Finland's National innovation system is struggling with is the fact that it is technology driven, not business pulled. Another problem is the university evaluation scale which focuses more on number of graduates and short-term factors, when it should put more emphasis on the cooperation success in the long-term, such as the triple helix connections with interaction and knowledge distribution. The results of this thesis indicated that there is indeed requirement for some structural changes in the Finland's National innovation system and innovation policy in order to generate successful biotechnology companies and innovation output. There is lack of joint output and scales of success, lack of people with experience, lack of language skills, lack of business knowledge and lack of growth companies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In accordance with the Moore's law, the increasing number of on-chip integrated transistors has enabled modern computing platforms with not only higher processing power but also more affordable prices. As a result, these platforms, including portable devices, work stations and data centres, are becoming an inevitable part of the human society. However, with the demand for portability and raising cost of power, energy efficiency has emerged to be a major concern for modern computing platforms. As the complexity of on-chip systems increases, Network-on-Chip (NoC) has been proved as an efficient communication architecture which can further improve system performances and scalability while reducing the design cost. Therefore, in this thesis, we study and propose energy optimization approaches based on NoC architecture, with special focuses on the following aspects. As the architectural trend of future computing platforms, 3D systems have many bene ts including higher integration density, smaller footprint, heterogeneous integration, etc. Moreover, 3D technology can signi cantly improve the network communication and effectively avoid long wirings, and therefore, provide higher system performance and energy efficiency. With the dynamic nature of on-chip communication in large scale NoC based systems, run-time system optimization is of crucial importance in order to achieve higher system reliability and essentially energy efficiency. In this thesis, we propose an agent based system design approach where agents are on-chip components which monitor and control system parameters such as supply voltage, operating frequency, etc. With this approach, we have analysed the implementation alternatives for dynamic voltage and frequency scaling and power gating techniques at different granularity, which reduce both dynamic and leakage energy consumption. Topologies, being one of the key factors for NoCs, are also explored for energy saving purpose. A Honeycomb NoC architecture is proposed in this thesis with turn-model based deadlock-free routing algorithms. Our analysis and simulation based evaluation show that Honeycomb NoCs outperform their Mesh based counterparts in terms of network cost, system performance as well as energy efficiency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A parallel pseudo-spectral method for the simulation in distributed memory computers of the shallow-water equations in primitive form was developed and used on the study of turbulent shallow-waters LES models for orographic subgrid-scale perturbations. The main characteristics of the code are: momentum equations integrated in time using an accurate pseudo-spectral technique; Eulerian treatment of advective terms; and parallelization of the code based on a domain decomposition technique. The parallel pseudo-spectral code is efficient on various architectures. It gives high performance onvector computers and good speedup on distributed memory systems. The code is being used for the study of the interaction mechanisms in shallow-water ows with regular as well as random orography with a prescribed spectrum of elevations. Simulations show the evolution of small scale vortical motions from the interaction of the large scale flow and the small-scale orographic perturbations. These interactions transfer energy from the large-scale motions to the small (usually unresolved) scales. The possibility of including the parametrization of this effects in turbulent LES subgrid-stress models for the shallow-water equations is addressed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a new strategy to control an one-legged robot aiming to reduce the energy expended by the system. To validate this algorithm, a classic method as benchmark was used. This method has been extensively validated by simulations and experimental prototypes in the literature. For simplicity reasons, the work is restricted to the two dimensional case due to simplicity reasons. This new method is compared to the classic one with respect to performance and energy expended by the system. The model consists on a springy leg, a simple body, and an actuated hinge-type hip. The new control strategy is composed of three parts, considering the hopping height, the forward speed, and the body orientation separately. The method exploits the system passive dynamics, defined as non-forced response of the system. In this case, the model is modified adding a spring to the hip. The method defines a desired leg trajectory close to the passive hip swing movement. Simulation results for both methods are analyzed and compared.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electricity price forecasting has become an important area of research in the aftermath of the worldwide deregulation of the power industry that launched competitive electricity markets now embracing all market participants including generation and retail companies, transmission network providers, and market managers. Based on the needs of the market, a variety of approaches forecasting day-ahead electricity prices have been proposed over the last decades. However, most of the existing approaches are reasonably effective for normal range prices but disregard price spike events, which are caused by a number of complex factors and occur during periods of market stress. In the early research, price spikes were truncated before application of the forecasting model to reduce the influence of such observations on the estimation of the model parameters; otherwise, a very large forecast error would be generated on price spike occasions. Electricity price spikes, however, are significant for energy market participants to stay competitive in a market. Accurate price spike forecasting is important for generation companies to strategically bid into the market and to optimally manage their assets; for retailer companies, since they cannot pass the spikes onto final customers, and finally, for market managers to provide better management and planning for the energy market. This doctoral thesis aims at deriving a methodology able to accurately predict not only the day-ahead electricity prices within the normal range but also the price spikes. The Finnish day-ahead energy market of Nord Pool Spot is selected as the case market, and its structure is studied in detail. It is almost universally agreed in the forecasting literature that no single method is best in every situation. Since the real-world problems are often complex in nature, no single model is able to capture different patterns equally well. Therefore, a hybrid methodology that enhances the modeling capabilities appears to be a possibly productive strategy for practical use when electricity prices are predicted. The price forecasting methodology is proposed through a hybrid model applied to the price forecasting in the Finnish day-ahead energy market. The iterative search procedure employed within the methodology is developed to tune the model parameters and select the optimal input set of the explanatory variables. The numerical studies show that the proposed methodology has more accurate behavior than all other examined methods most recently applied to case studies of energy markets in different countries. The obtained results can be considered as providing extensive and useful information for participants of the day-ahead energy market, who have limited and uncertain information for price prediction to set up an optimal short-term operation portfolio. Although the focus of this work is primarily on the Finnish price area of Nord Pool Spot, given the result of this work, it is very likely that the same methodology will give good results when forecasting the prices on energy markets of other countries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis presents a one-dimensional, semi-empirical dynamic model for the simulation and analysis of a calcium looping process for post-combustion CO2 capture. Reduction of greenhouse emissions from fossil fuel power production requires rapid actions including the development of efficient carbon capture and sequestration technologies. The development of new carbon capture technologies can be expedited by using modelling tools. Techno-economical evaluation of new capture processes can be done quickly and cost-effectively with computational models before building expensive pilot plants. Post-combustion calcium looping is a developing carbon capture process which utilizes fluidized bed technology with lime as a sorbent. The main objective of this work was to analyse the technological feasibility of the calcium looping process at different scales with a computational model. A one-dimensional dynamic model was applied to the calcium looping process, simulating the behaviour of the interconnected circulating fluidized bed reactors. The model incorporates fundamental mass and energy balance solvers to semi-empirical models describing solid behaviour in a circulating fluidized bed and chemical reactions occurring in the calcium loop. In addition, fluidized bed combustion, heat transfer and core-wall layer effects were modelled. The calcium looping model framework was successfully applied to a 30 kWth laboratory scale and a pilot scale unit 1.7 MWth and used to design a conceptual 250 MWth industrial scale unit. Valuable information was gathered from the behaviour of a small scale laboratory device. In addition, the interconnected behaviour of pilot plant reactors and the effect of solid fluidization on the thermal and carbon dioxide balances of the system were analysed. The scale-up study provided practical information on the thermal design of an industrial sized unit, selection of particle size and operability in different load scenarios.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this thesis is to identify the Performance Determinants (PD) of Renewable Energy (RE) companies. It analyzes the background of the RE industry while reflecting simultaneous developments in the fossil based industries. I divided the determinants into two groups: market level and firm level and established hypotheses based on the existing literature. Data from public companies was gathered to construct a Panel Data structure. This is then tested by using a Linear Regression with Fixed Effects model. The model specification was efficient at reflecting the analyzed phenomena. My results showed that both market level and firm level determinants are significant in the RE Industry but the firm level determinants had higher explanatory power (R2). The determinants' relationships were found to follow those from the manufacturing industry more than the utilities' industry. Out of the market level determinants Consumer Price Index (CPI), Interest Rates and Oil prices were significant. Out of the firm level determinants Debt to Assets, Net Investments, Cash flows from operations, Sales and Earnings Before Interests and Taxes (EBIT) were significant. I concluded that this information is valuable for key industry players as they can achieve their objectives faster by elaborating better strategies using these results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The pumping processes requiring wide range of flow are often equipped with parallelconnected centrifugal pumps. In parallel pumping systems, the use of variable speed control allows that the required output for the process can be delivered with a varying number of operated pump units and selected rotational speed references. However, the optimization of the parallel-connected rotational speed controlled pump units often requires adaptive modelling of both parallel pump characteristics and the surrounding system in varying operation conditions. The available information required for the system modelling in typical parallel pumping applications such as waste water treatment and various cooling and water delivery pumping tasks can be limited, and the lack of real-time operation point monitoring often sets limits for accurate energy efficiency optimization. Hence, alternatives for easily implementable control strategies which can be adopted with minimum system data are necessary. This doctoral thesis concentrates on the methods that allow the energy efficient use of variable speed controlled parallel pumps in system scenarios in which the parallel pump units consist of a centrifugal pump, an electric motor, and a frequency converter. Firstly, the suitable operation conditions for variable speed controlled parallel pumps are studied. Secondly, methods for determining the output of each parallel pump unit using characteristic curve-based operation point estimation with frequency converter are discussed. Thirdly, the implementation of the control strategy based on real-time pump operation point estimation and sub-optimization of each parallel pump unit is studied. The findings of the thesis support the idea that the energy efficiency of the pumping can be increased without the installation of new, more efficient components in the systems by simply adopting suitable control strategies. An easily implementable and adaptive control strategy for variable speed controlled parallel pumping systems can be created by utilizing the pump operation point estimation available in modern frequency converters. Hence, additional real-time flow metering, start-up measurements, and detailed system model are unnecessary, and the pumping task can be fulfilled by determining a speed reference for each parallel-pump unit which suggests the energy efficient operation of the pumping system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The report presents the results of the commercialization project called the Container logistic services for forest bioenergy. The project promotes new business that is emerging around overall container logistic services in the bioenergy sector. The results assess the European markets of the container logistics for biomass, enablers for new business creation and required service bundles for the concept. We also demonstrate the customer value of the container logistic services for different market segments. The concept analysis is based on concept mapping, quality function deployment process (QFD) and business network analysis. The business network analysis assesses key shareholders and their mutual connections. The performance of the roadside chipping chain is analysed by the logistic cost simulation, RFID system demonstration and freezing tests. The EU has set the renewable energy target to 20 % in 2020 of which Biomass could account for two-thirds. In the Europe, the production of wood fuels was 132.9 million solid-m3 in 2012 and production of wood chips and particles was 69.0 million solidm3. The wood-based chips and particle flows are suitable for container transportation providing market of 180.6 million loose- m3 which mean 4.5 million container loads per year. The intermodal logistics of trucks and trains are promising for the composite containers because the biomass does not freeze onto the inner surfaces in the unloading situations. The overall service concept includes several packages: container rental, container maintenance, terminal services, RFID-tracking service, and simulation and ERP-integration service. The container rental and maintenance would provide transportation entrepreneurs a way to increase the capacity without high investment costs. The RFID-concept would lead to better work planning improving profitability throughout the logistic chain and simulation supports fuel supply optimization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Waste incineration is becoming increasingly widespread method of waste disposal in China. Incineration plants mostly use grate and circular fluidized bed (CFB) technology. Waste combustion in cement production is also beginning to gradually increase. However, Chinese waste composition is causing problems for the energy utilization. Mechanical waste pre-treatment optimizes the combustion process and facilitates the energy recovery. The objective of this study is to identify how Western waste pre-treatment manufacturer could operate in Chinese markets. Chinese waste management industry is reviewed via PESTEL analysis. The current state and future predictions of grate and CFB incineration as well as cement manufacturing are monitored. Grate combustion, which requires lesser waste pre-treatment, is becoming more common at the expense of CFB incineration in China. The most promising future for waste treatment is in cement production industry. Waste treatment equipment manufacturer should try to create pilot projects with biggest cement producers with a view of growing co-operation in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Concentrated solar power (CSP) is a renewable energy technology, which could contribute to overcoming global problems related to pollution emissions and increasing energy demand. CSP utilizes solar irradiation, which is a variable source of energy. In order to utilize CSP technology in energy production and reliably operate a solar field including thermal energy storage system, dynamic simulation tools are needed in order to study the dynamics of the solar field, to optimize production and develop control systems. The object of this Master’s Thesis is to compare different concentrated solar power technologies and configure a dynamic solar field model of one selected CSP field design in the dynamic simulation program Apros, owned by VTT and Fortum. The configured model is based on German Novatec Solar’s linear Fresnel reflector design. Solar collector components including dimensions and performance calculation were developed, as well as a simple solar field control system. The preliminary simulation results of two simulation cases under clear sky conditions were good; the desired and stable superheated steam conditions were maintained in both cases, while, as expected, the amount of steam produced was reduced in the case having lower irradiation conditions. As a result of the model development process, it can be concluded, that the configured model is working successfully and that Apros is a very capable and flexible tool for configuring new solar field models and control systems and simulating solar field dynamic behaviour.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wind energy has obtained outstanding expectations due to risks of global warming and nuclear energy production plant accidents. Nowadays, wind farms are often constructed in areas of complex terrain. A potential wind farm location must have the site thoroughly surveyed and the wind climatology analyzed before installing any hardware. Therefore, modeling of Atmospheric Boundary Layer (ABL) flows over complex terrains containing, e.g. hills, forest, and lakes is of great interest in wind energy applications, as it can help in locating and optimizing the wind farms. Numerical modeling of wind flows using Computational Fluid Dynamics (CFD) has become a popular technique during the last few decades. Due to the inherent flow variability and large-scale unsteadiness typical in ABL flows in general and especially over complex terrains, the flow can be difficult to be predicted accurately enough by using the Reynolds-Averaged Navier-Stokes equations (RANS). Large- Eddy Simulation (LES) resolves the largest and thus most important turbulent eddies and models only the small-scale motions which are more universal than the large eddies and thus easier to model. Therefore, LES is expected to be more suitable for this kind of simulations although it is computationally more expensive than the RANS approach. With the fast development of computers and open-source CFD software during the recent years, the application of LES toward atmospheric flow is becoming increasingly common nowadays. The aim of the work is to simulate atmospheric flows over realistic and complex terrains by means of LES. Evaluation of potential in-land wind park locations will be the main application for these simulations. Development of the LES methodology to simulate the atmospheric flows over realistic terrains is reported in the thesis. The work also aims at validating the LES methodology at a real scale. In the thesis, LES are carried out for flow problems ranging from basic channel flows to real atmospheric flows over one of the most recent real-life complex terrain problems, the Bolund hill. All the simulations reported in the thesis are carried out using a new OpenFOAM® -based LES solver. The solver uses the 4th order time-accurate Runge-Kutta scheme and a fractional step method. Moreover, development of the LES methodology includes special attention to two boundary conditions: the upstream (inflow) and wall boundary conditions. The upstream boundary condition is generated by using the so-called recycling technique, in which the instantaneous flow properties are sampled on aplane downstream of the inlet and mapped back to the inlet at each time step. This technique develops the upstream boundary-layer flow together with the inflow turbulence without using any precursor simulation and thus within a single computational domain. The roughness of the terrain surface is modeled by implementing a new wall function into OpenFOAM® during the thesis work. Both, the recycling method and the newly implemented wall function, are validated for the channel flows at relatively high Reynolds number before applying them to the atmospheric flow applications. After validating the LES model over simple flows, the simulations are carried out for atmospheric boundary-layer flows over two types of hills: first, two-dimensional wind-tunnel hill profiles and second, the Bolund hill located in Roskilde Fjord, Denmark. For the twodimensional wind-tunnel hills, the study focuses on the overall flow behavior as a function of the hill slope. Moreover, the simulations are repeated using another wall function suitable for smooth surfaces, which already existed in OpenFOAM® , in order to study the sensitivity of the flow to the surface roughness in ABL flows. The simulated results obtained using the two wall functions are compared against the wind-tunnel measurements. It is shown that LES using the implemented wall function produces overall satisfactory results on the turbulent flow over the two-dimensional hills. The prediction of the flow separation and reattachment-length for the steeper hill is closer to the measurements than the other numerical studies reported in the past for the same hill geometry. The field measurement campaign performed over the Bolund hill provides the most recent field-experiment dataset for the mean flow and the turbulence properties. A number of research groups have simulated the wind flows over the Bolund hill. Due to the challenging features of the hill such as the almost vertical hill slope, it is considered as an ideal experimental test case for validating micro-scale CFD models for wind energy applications. In this work, the simulated results obtained for two wind directions are compared against the field measurements. It is shown that the present LES can reproduce the complex turbulent wind flow structures over a complicated terrain such as the Bolund hill. Especially, the present LES results show the best prediction of the turbulent kinetic energy with an average error of 24.1%, which is a 43% smaller than any other model results reported in the past for the Bolund case. Finally, the validated LES methodology is demonstrated to simulate the wind flow over the existing Muukko wind farm located in South-Eastern Finland. The simulation is carried out only for one wind direction and the results on the instantaneous and time-averaged wind speeds are briefly reported. The demonstration case is followed by discussions on the practical aspects of LES for the wind resource assessment over a realistic inland wind farm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this project was to develop general framework for systematic assessment of energy efficiency of heating on regional level in Russia. The framework created during this project includes two main instruments, namely: general regional heating energy efficiency assessment model (REEMod) and general regional heating energy efficiency assessment criteria for housing areas (REECrit). Framework pays extreme attention to realization of energy saving, overall cost efficiency and comfortable indoor climate. Life-cycle ideology was applied during creation of the framework. Application of the framework can provide decision-making process with systematically collected and processed information on current state of areas energy efficiency. Such information will help decision makers to evaluate current situation of the whole energy chain, to compare different development scenarios and to identify the most efficient improvement methods, thus supporting realization of regions efficient energy management. Simultaneous pursuit of energy savings, cost efficiency and indoor air quality can contribute to development of sustainable community. Presented instruments should be continuously developed further as an iterative process based on knew experience, development of technology and overall understanding of energy efficiency issues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cosmological standard view is based on the assumptions of homogeneity, isotropy and general relativistic gravitational interaction. These alone are not sufficient for describing the current cosmological observations of accelerated expansion of space. Although general relativity is extremely accurately tested to describe the local gravitational phenomena, there is a strong demand for modifying either the energy content of the universe or the gravitational interaction itself to account for the accelerated expansion. By adding a non-luminous matter component and a constant energy component with negative pressure, the observations can be explained with general relativity. Gravitation, cosmological models and their observational phenomenology are discussed in this thesis. Several classes of dark energy models that are motivated by theories outside the standard formulation of physics were studied with emphasis on the observational interpretation. All the cosmological models that seek to explain the cosmological observations, must also conform to the local phenomena. This poses stringent conditions for the physically viable cosmological models. Predictions from a supergravity quintessence model was compared to Supernova 1a data and several metric gravity models were studied with local experimental results. Polytropic stellar configurations of solar, white dwarf and neutron stars were numerically studied with modified gravity models. The main interest was to study the spacetime around the stars. The results shed light on the viability of the studied cosmological models.