868 resultados para energy efficiency labelling


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Wireless enabled portable devices must operate with the highest possible energy efficiency while still maintaining a minimum level and quality of service to meet the user's expectations. The authors analyse the performance of a new pointer-based medium access control protocol that was designed to significantly improve the energy efficiency of user terminals in wireless local area networks. The new protocol, pointer controlled slot allocation and resynchronisation protocol (PCSAR), is based on the existing IEEE 802.11 point coordination function (PCF) standard. PCSAR reduces energy consumption by removing the need for power saving stations to remain awake and listen to the channel. Using OPNET, simulations were performed under symmetric channel loading conditions to compare the performance of PCSAR with the infrastructure power saving mode of IEEE 802.11, PCF-PS. The simulation results demonstrate a significant improvement in energy efficiency without significant reduction in performance when using PCSAR. For a wireless network consisting of an access point and 8 stations in power saving mode, the energy saving was up to 31% while using PCSAR instead of PCF-PS, depending upon frame error rate and load. The results also show that PCSAR offers significantly reduced uplink access delay over PCF-PS while modestly improving uplink throughput.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The performance of a new pointer-based medium-access control protocol that was designed to significantly improve the energy efficiency of user terminals in quality-of-service-enabled wireless local area networks was analysed. The new protocol, pointer-controlled slot allocation and resynchronisation protocol (PCSARe), is based on the hybrid coordination function-controlled channel access mode of the IEEE 802.11e standard. PCSARe reduces energy consumption by removing the need for power-saving stations to remain awake for channel listening. Discrete event network simulations were performed to compare the performance of PCSARe with the non-automatic power save delivery (APSD) and scheduled-APSD power-saving modes of IEEE 802.11e. The simulation results show a demonstrable improvement in energy efficiency without significant reduction in performance when using PCSARe. For a wireless network consisting of an access point and eight stations in power-saving mode, the energy saving was up to 39% when using PCSARe instead of IEEE 802.11e non-APSD. The results also show that PCSARe offers significantly reduced uplink access delay over IEEE 802.11e non-APSD, while modestly improving the uplink throughput. Furthermore, although both had the same energy consumption, PCSARe gave a 25% reduction in downlink access delay compared with IEEE 802.11e S-APSD.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Seasonal and day-to-day variations in travel behaviour and performance of private passenger vehicles can be partially explained by changes in weather conditions. Likewise, in the electricity sector, weather affects energy demand. The impact of weather conditions on private passenger vehicle performance, usership statistics and travel behaviour has been studied for conventional, internal combustion engine, vehicles. Similarly, weather-driven variability in electricity demand and generation has been investigated widely. The aim of these analyses in both sectors is to improve energy efficiency, reduce consumption in peak hours and reduce greenhouse gas emissions. However, the potential effects of seasonal weather variations on electric vehicle usage have not yet been investigated. In Ireland the government has set a target requiring 10% of all vehicles in the transport fleet to be powered by electricity by 2020 to meet part of its European Union obligations to reduce greenhouse gas emissions and increase energy efficiency. This paper fills this knowledge gap by compiling some of the published information available for internal combustion engine vehicles and applying the lessons learned and results to electric vehicles with an analysis of historical weather data in Ireland and electricity market data in a number of what-if scenarios. Areas particularly impacted by weather conditions are battery performance, energy consumption and choice of transportation mode by private individuals.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In ultra-low data rate wireless sensor networks (WSNs) waking up just to listen to a beacon every superframe can be a major waste of energy. This study introduces MedMAC, a medium access protocol for ultra-low data rate WSNs that achieves significant energy efficiency through a novel synchronisation mechanism. The new draft IEEE 802.15.6 standard for body area networks includes a sub-class of applications such as medical implantable devices and long-term micro miniature sensors with ultra-low power requirements. It will be desirable for these devices to have 10 years or more of operation between battery changes, or to have average current requirements matched to energy harvesting technology. Simulation results are presented to show that the MedMAC allows nodes to maintain synchronisation to the network while sleeping through many beacons with a significant increase in energy efficiency during periods of particularly low data transfer. Results from a comparative analysis of MedMAC and IEEE 802.15.6 MAC show that MedMAC has superior efficiency with energy savings of between 25 and 87 for the presented scenarios. © 2011 The Institution of Engineering and Technology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Since the UN report by the Brundtland Committee, sustainability in the built environment has mainly been seen from a technical focus on single buildings or products. With the energy efficiency approaching 100%, fossil resources depleting and a considerable part of the world still in need of better prosperity, the playing field of a technical focus has become very limited. It will most probably not lead to the sustainable development needed to avoid irreversible effects on climate, energy provision and, not least, society.
Cities are complex structures of independently functioning elements, all of which are nevertheless connected to different forms of infrastructure, which provide the necessary sources or solve the release of waste material. With the current ambitions regarding carbon- or energy-neutrality, retreating again to the scale of a building is likely to fail. Within an urban context a single building cannot become fully resource-independent, and need not, from our viewpoint. Cities should be considered as an organism that has the ability to intelligently exchange sources and waste flows. Especially in terms of energy, it can be made clear that the present situation in most cities are undesired: there is simultaneous demand for heat and cold, and in summer a lot of excess energy is lost, which needs to be produced again in winter. The solution for this is a system that intelligently exchanges and stores essential sources, e.g. energy, and that optimally utilises waste flows.
This new approach will be discussed and exemplified. The Rotterdam Energy Approach and Planning (REAP) will be illustrated as a means for urban planning, whereas Swarm Planning will be introduced as another nature-based principle for swift changes towards sustainability

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper considers the concept of light pollution and its connections to moral geographies of landscape in Britain. The paper aims to provide a greater understanding of light pollution in the present day, where the issue connects to policy debates about energy efficiency, crime, health, ecology and night time aesthetics, whilst also engaging with new areas of research in cultural geography. The main sources of investigation are the Campaign to Protect Rural England and the British Astronomical Association’s Campaign for Dark Skies (est. 1990). Using interviews, archival and textual analysis, the paper examines this anti-light-pollution lobby, looking at the lead-up to the formation of the Campaign as well as its ongoing influence. A moral geography of light pollution is identified, drawing on two interconnected discourses – a notion of the ‘astronomical sublime’ and the problem of urbanization. Whilst the former is often invoked, both through visual and linguistic means, by anti-light pollution campaigners, the latter is characterized as a threat to clear night skies, echoing earlier protests against urban sprawl. Complementing a growing area of research, the geographies of light and darkness, this paper considers the light pollution lobby as a way of investigating the fundamental relationship between humankind and the cosmos in the modern age.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider a multipair decode-and-forward relay channel, where multiple sources transmit simultaneously their signals to multiple destinations with the help of a full-duplex relay station. We assume that the relay station is equipped with massive arrays, while all sources and destinations have a single antenna. The relay station uses channel estimates obtained from received pilots and zero-forcing (ZF) or maximum-ratio combining/maximum-ratio transmission (MRC/MRT) to process the signals. To reduce significantly the loop interference effect, we propose two techniques: i) using a massive receive antenna array; or ii) using a massive transmit antenna array together with very low transmit power at the relay station. We derive an exact achievable rate in closed-form for MRC/MRT processing and an analytical approximation of the achievable rate for ZF processing. This approximation is very tight, especially for large number of relay station antennas. These closed-form expressions enable us to determine the regions where the full-duplex mode outperforms the half-duplex mode, as well as, to design an optimal power allocation scheme. This optimal power allocation scheme aims to maximize the energy efficiency for a given sum spectral efficiency and under peak power constraints at the relay station and sources. Numerical results verify the effectiveness of the optimal power allocation scheme. Furthermore, we show that, by doubling the number of transmit/receive antennas at the relay station, the transmit power of each source and of the relay station can be reduced by 1.5dB if the pilot power is equal to the signal power, and by 3dB if the pilot power is kept fixed, while maintaining a given quality-of-service.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we investigate the impact of circuit misbehavior due to parametric variations and voltage scaling on the performance of wireless communication systems. Our study reveals the inherent error resilience of such systems and argues that sufficiently reliable operation can be maintained even in the presence of unreliable circuits and manufacturing defects. We further show how selective application of more robust circuit design techniques is sufficient to deal with high defect rates at low overhead and improve energy efficiency with negligible system performance degradation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The end of Dennard scaling has pushed power consumption into a first order concern for current systems, on par with performance. As a result, near-threshold voltage computing (NTVC) has been proposed as a potential means to tackle the limited cooling capacity of CMOS technology. Hardware operating in NTV consumes significantly less power, at the cost of lower frequency, and thus reduced performance, as well as increased error rates. In this paper, we investigate if a low-power systems-on-chip, consisting of ARM's asymmetric big.LITTLE technology, can be an alternative to conventional high performance multicore processors in terms of power/energy in an unreliable scenario. For our study, we use the Conjugate Gradient solver, an algorithm representative of the computations performed by a large range of scientific and engineering codes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Several studies in the last decade have pointed out that many devices, such as computers, are often left powered on even when idle, just to make them available and reachable on the network, leading to large energy waste. The concept of network connectivity proxy (NCP) has been proposed as an effective means to improve energy efficiency. It impersonates the presence of networked devices that are temporally unavailable, by carrying out background networking routines on their behalf. Hence, idle devices could be put into low-power states and save energy. Several architectural alternatives and the applicability of this concept to different protocols and applications have been investigated. However, there is no clear understanding of the limitations and issues of this approach in current networking scenarios. This paper extends the knowledge about the NCP by defining an extended set of tasks that the NCP can carry out, by introducing a suitable communication interface to control NCP operation, and by designing, implementing, and evaluating a functional prototype.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a mathematically rigorous Quality-of-Service (QoS) metric which relates the achievable quality of service metric (QoS) for a real-time analytics service to the server energy cost of offering the service. Using a new iso-QoS evaluation methodology, we scale server resources to meet QoS targets and directly rank the servers in terms of their energy-efficiency and by extension cost of ownership. Our metric and method are platform-independent and enable fair comparison of datacenter compute servers with significant architectural diversity, including micro-servers. We deploy our metric and methodology to compare three servers running financial option pricing workloads on real-life market data. We find that server ranking is sensitive to data inputs and desired QoS level and that although scale-out micro-servers can be up to two times more energy-efficient than conventional heavyweight servers for the same target QoS, they are still six times less energy efficient than high-performance computational accelerators.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A methodology is presented that combines a multi-objective evolutionary algorithm and artificial neural networks to optimise single-storey steel commercial buildings for net-zero carbon impact. Both symmetric and asymmetric geometries are considered in conjunction with regulated, unregulated and embodied carbon. Offsetting is achieved through photovoltaic (PV) panels integrated into the roof. Asymmetric geometries can increase the south facing surface area and consequently allow for improved PV energy production. An exemplar carbon and energy breakdown of a retail unit located in Belfast UK with a south facing PV roof is considered. It was found in most cases that regulated energy offsetting can be achieved with symmetric geometries. However, asymmetric geometries were necessary to account for the unregulated and embodied carbon. For buildings where the volume is large due to high eaves, carbon offsetting became increasingly more difficult, and not possible in certain cases. The use of asymmetric geometries was found to allow for lower embodied energy structures with similar carbon performance to symmetrical structures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a rigorous methodology and new metrics for fair comparison of server and microserver platforms. Deploying our methodology and metrics, we compare a microserver with ARM cores against two servers with ×86 cores running the same real-time financial analytics workload. We define workload-specific but platform-independent performance metrics for platform comparison, targeting both datacenter operators and end users. Our methodology establishes that a server based on the Xeon Phi co-processor delivers the highest performance and energy efficiency. However, by scaling out energy-efficient microservers, we achieve competitive or better energy efficiency than a power-equivalent server with two Sandy Bridge sockets, despite the microserver's slower cores. Using a new iso-QoS metric, we find that the ARM microserver scales enough to meet market throughput demand, that is, a 100% QoS in terms of timely option pricing, with as little as 55% of the energy consumed by the Sandy Bridge server.