927 resultados para endocrine-disrupting chemicals
Resumo:
Queensland fruit fly, Bactrocera tryoni (Froggatt) (Diptera: Tephritidae) is a major horticultural insect pest in Australia which significantly limits domestic and international market access for Australian horticultural produce. Citrus is one of the industries seriously affected by the fruit fly problem in Australia. This research investigated the effect of citrus peel essential oil chemicals on B. tryoni larval survival in five different commercially important Citrus species and cultivars as a way of better understanding fruit susceptibility. The fruits used were Murcott Mandarin, Navel orange, Eureka lemon, Valencia orange and yellow grapefruit. The essential oils of each citrus type were extracted using hydrodistillation and then mixed, at different concentrations, with artificial larval diets to which B. tryoni eggs were added. Surviving larvae were counted after five trial days. The same process was repeated for six essential oil components. Regression analysis of increasing oil concentration against larval survival showed that the crude oil blends of Navel orange, Eureka lemon and yellow grapefruit had significant negative effects on B. tryoni larval survival, but no such effects were seen for Murcott Mandarin and Valencia orange. Of the individual essential oil fractions, only D-limonene had a significant effect on B. tryoni larval survival, with this chemical being highly toxic at very low concentrations. The results of this study open up opportunities for incorporating B. tryoni resistance mechanisms into citrus through minor peel property changes which would not impact on the eating attributes of the fruit.
Resumo:
FCT - PEst-C/EGE/LA0006/2011
Resumo:
A multi-residue gas chromatography-mass spectrometry method was developed in order to evaluate the presence of 39 pesticides of different chemical families (organophosphorus, triazines, imidazole, organochlorine), as well as some of their transformation products, in surface water samples from Ria de Aveiro. Ria de Aveiro is an estuarine coastal lagoon, located in the northern west region of Portugal, which receives inputs from agriculture, urban and industrial activities. The analytical method was developed and validated according international guidelines and showed good linearity, with correlation coefficients higher than 0.9949 for all compounds, adequate precision and accuracy, and high sensitivity. Pesticides were chosen from the priority pollutants list of the Directive 2008/105/EC of the European Parliament and of the Council (on environmental quality standards in the field of water policy), or were selected due their common use in agricultural practices. Some of these 39 pesticides are, or are suspected to be, endocrine disruptor compounds (EDCs), being capable of altering the endocrine system of wildlife and humans, causing form malfunction and ultimately health problems. Even those pesticides which are not EDCs, are known to be awfully toxic and have a recognised impact in human health. The aquatic environment is particularly susceptible to pollution due to intentional and accidental release of chemicals to water [3]. Pesticide contamination of surface water is a national issue as it is often used as drinking water. This concern is especially important in rural agricultural areas where population uses small private water supplies, regularly without any laboratory surveillance. The study was performed in seven sampling points and the results showed a considerable concern pesticide contamination of all samples.
Resumo:
Les Troubles du Spectre Autistique (TSA) sont caractérisés par deux principaux symptômes : des difficultés de communication sociale et des comportements stéréotypés et intérêts restreints. Les TSA touchent 5 fois plus les garçons que les filles et une augmentation de la prévalence exponentielle et continue a été observée aux États-Unis ces dernières décennies. Cette augmentation ne peut s’expliquer par les facteurs génétiques à eux seuls qui ne représentent que 5 à 15% des cas de TSA. Il est donc indispensable d’identifier de potentiels facteurs de risque environnementaux des TSA. Le but de ce travail est d’étudier différents facteurs environnementaux potentiellement modifiables dans le développement de phénotypes autistiques dans différents modèles précliniques des TSA. Les objectifs spécifiques sont : (i) caractériser les effets neurocomportementaux provoqués par une exposition périnatale simultanée à 5 perturbateurs endocriniens parmi les plus prévalent dans notre environnement quotidien (DEHP, DBP, DiNP, BDE-47, BDE-99) à de faibles doses pertinentes pour l’exposition humaine, (ii) identifier les effets neurocomportementaux associés à une altération périconceptionnelle du microbiote maternelle (iii) déterminer les effets neurocomportementaux associés à une altération périconceptionnelle du métabolisme monocarboné. Les résultats présentés dans cette thèse démontrent le potentiel de chacun de ces facteurs environnementaux d’altérer le développement cérébral fœtal. Chaque condition expérimentale a provoqué l’apparition de traits autistiques chez les rats, avec des spécificités comportementales pour chaque exposition développementale. Des déficits d’interactions sociales ont été observés dans chaque situation expérimentale, associés soit à de l’anxiété, de l’hyperactivité, des altérations d’intégration sensorimotrice, et/ou des stéréotypies. Cela nous force à considérer les TSA comme une pathologie aux multiples facettes où l’hétérogénéité des tableaux cliniques est représentative de l’hétérogénéité des causes possibles. La multitude des interactions environnementales courantes possibles avec l’épigénome pourrait être à la base de la grande diversité observée dans la sévérité des symptômes et / ou des comorbidités des TSA. Ce travail ouvre des perspectives futures de prévention ciblée des TSA fondées sur de potentielles modifications de l’environnement comme la réduction de l’exposition aux perturbateurs endocriniens, ou des supplémentations en donneurs monocarbonés (e.g. acide folique) et/ou probiotiques.
Resumo:
Interactions between two endocrine disruptors (ED) and aquatic humic substances (AHS) from tropical rivers were studied using an ultrafiltration system equipped with a 1 kDa cut-off cellulose membrane to separate free ED from the fraction bound in the AHS. Quantification of 17 alpha-ethynylestradiol and bisphenol A was performed using gas chromatography-mass spectrometry (GC-MS). The times required for establishment of equilibrium between the AHS and the ED were ca. 30 min, and complexation capacities for 17 alpha-ethynylestradiol and bisphenol A were 18.53 and 2.07 mg g(-1) TOC, respectively. The greater interaction of AHS with 17 alpha-ethynylestradiol, compared to bisphenol A, was due to the presence of hydrogen in the structure of 17 alpha-ethynylestradiol, which could interact with ionized oxygenated groups of the AHS. The results indicate that AHS can strongly influence the transport and reactivity of endocrine disruptors in aquatic systems.
Resumo:
Healthcare Associated Infections (HAIs) in the United States, are estimated to cost nearly $10 billion annually. And, while device-related infections have decreased, the 60% attributed to pneumonia, gastrointestinal pathogens and surgical site infections (SSIs) remain prevalent. Furthermore, these are often complicated by antibacterial resistance that ultimately cause 2 million illnesses and 23,000 deaths in the US annually. Antibacterial resistance is an issue increasing in severity as existing antibiotics are losing effectiveness, and fewer new antibiotics are being developed. As a result, new methods of combating bacterial virulence are required. Modulating communications of bacteria can alter phenotype, such as biofilm formation and toxin production. Disrupting these communications provides a means of controlling virulence without directly interacting with the bacteria of interest, a strategy contrary to traditional antibiotics. Inter- and intra-species bacterial communication is commonly called quorum sensing because the communication molecules have been linked to phenotypic changes based on bacterial population dynamics. By disrupting the communication, a method called ‘quorum quenching’, bacterial phenotype can be altered. Virulence of bacteria is both population and species dependent; each species will secrete different toxic molecules, and total population will affect bacterial phenotype9. Here, the kinase LsrK and lactonase SsoPox were combined to simultaneously disrupt two different communication pathways with direct ties to virulence leading to SSIs, gastrointestinal infection and pneumonia. To deliver these enzymes for site-specific virulence prevention, two naturally occurring polymers were used, chitosan and alginate. Chitosan, from crustacean shells, and alginate, from seaweed, are frequently studied due to their biocompatibility, availability, self-assembly and biodegrading properties and have already been verified in vivo for wound-dressing. In this work, a novel functionalized capsule of quorum quenching enzymes and biocompatible polymers was constructed and demonstrated to have dual-quenching capability. This combination of immobilized enzymes has the potential for preventing biofilm formation and reducing bacterial toxicity in a wide variety of medical and non-medical applications.
Resumo:
Tese de dout. Ciências e Tecnologias do Ambiente, Faculdade de Ciências do Mar e do Ambiente, Univ. do Algarve, 2004
Resumo:
The dual problems of sustaining the fast growth of human society and preserving the environment for future generations urge us to shift our focus from exploiting fossil oils to researching and developing more affordable, reliable and clean energy sources. Human beings had a long history that depended on meeting our energy demands with plant biomass, and the modern biorefinery technologies realize the effective conversion of biomass to production of transportation fuels, bulk and fine chemicals so to alleviate our reliance on fossil fuel resources of declining supply. With the aim of replacing as much non-renewable carbon from fossil oils with renewable carbon from biomass as possible, innovative R&D activities must strive to enhance the current biorefinery process and secure our energy future. Much of my Ph.D. research effort is centered on the study of electrocatalytic conversion of biomass-derived compounds to produce value-added chemicals, biofuels and electrical energy on model electrocatalysts in AEM/PEM-based continuous flow electrolysis cell and fuel cell reactors. High electricity generation performance was obtained when glycerol or crude glycerol was employed as fuels in AEMFCs. The study on selective electrocatalytic oxidation of glycerol shows an electrode potential-regulated product distribution where tartronate and mesoxalate can be selectively produced with electrode potential switch. This finding then led to the development of AEMFCs with selective production of valuable tartronate or mesoxalate with high selectivity and yield and cogeneration of electricity. Reaction mechanisms of electrocatalytic oxidation of ethylene glycol and 1,2-propanediol were further elucidated by means of an on-line sample collection technique and DFT modeling. Besides electro-oxidation of biorenewable alcohols to chemicals and electricity, electrocatalytic reduction of keto acids (e.g. levulinic acid) was also studied for upgrading biomass-based feedstock to biofuels while achieving renewable electricity storage. Meanwhile, ORR that is often coupled in AEMFCs on the cathode was investigated on non-PGM electrocatalyst with comparable activity to commercial Pt/C. The electro-biorefinery process could be coupled with traditional biorefinery operation and will play a significant role in our energy and chemical landscape.
Resumo:
Measurement and modeling techniques were developed to improve over-water gaseous air-water exchange measurements for persistent bioaccumulative and toxic chemicals (PBTs). Analytical methods were applied to atmospheric measurements of hexachlorobenzene (HCB), polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs). Additionally, the sampling and analytical methods are well suited to study semivolatile organic compounds (SOCs) in air with applications related to secondary organic aerosol formation, urban, and indoor air quality. A novel gas-phase cleanup method is described for use with thermal desorption methods for analysis of atmospheric SOCs using multicapillary denuders. The cleanup selectively removed hydrogen-bonding chemicals from samples, including much of the background matrix of oxidized organic compounds in ambient air, and thereby improved precision and method detection limits for nonpolar analytes. A model is presented that predicts gas collection efficiency and particle collection artifact for SOCs in multicapillary denuders using polydimethylsiloxane (PDMS) sorbent. An approach is presented to estimate the equilibrium PDMS-gas partition coefficient (Kpdms) from an Abraham solvation parameter model for any SOC. A high flow rate (300 L min-1) multicapillary denuder was designed for measurement of trace atmospheric SOCs. Overall method precision and detection limits were determined using field duplicates and compared to the conventional high-volume sampler method. The high-flow denuder is an alternative to high-volume or passive samplers when separation of gas and particle-associated SOCs upstream of a filter and short sample collection time are advantageous. A Lagrangian internal boundary layer transport exchange (IBLTE) Model is described. The model predicts the near-surface variation in several quantities with fetch in coastal, offshore flow: 1) modification in potential temperature and gas mixing ratio, 2) surface fluxes of sensible heat, water vapor, and trace gases using the NOAA COARE Bulk Algorithm and Gas Transfer Model, 3) vertical gradients in potential temperature and mixing ratio. The model was applied to interpret micrometeorological measurements of air-water exchange flux of HCB and several PCB congeners in Lake Superior. The IBLTE Model can be applied to any scalar, including water vapor, carbon dioxide, dimethyl sulfide, and other scalar quantities of interest with respect to hydrology, climate, and ecosystem science.
Resumo:
Human scent, or the volatile organic compounds (VOCs) produced by an individual, has been recognized as a biometric measurement because of the distinct variations in both the presence and abundance of these VOCs between individuals. In forensic science, human scent has been used as a form of associative evidence by linking a suspect to a scene/object through the use of human scent discriminating canines. The scent most often collected and used with these specially trained canines is from the hands because a majority of the evidence collected is likely to have been handled by the suspect. However, the scents from other biological specimens, especially those that are likely to be present at scenes of violent crimes, have yet to be explored. Hair, fingernails and saliva are examples of these types of specimens. In this work, a headspace solid phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) technique was used for the identification of VOCs from hand odor, hair, fingernails and saliva. Sixty individuals were sampled and the profiles of the extracted VOCs were evaluated to assess whether they could be used for distinguishing individuals. Preliminary analysis of the biological specimens collected from an individual (intra-subject) showed that, though these materials have some VOCs in common, their overall chemical profile is different for each specimen type. Pair-wise comparisons, using Spearman Rank correlations, were made between the chemical profiles obtained from each subject, per a specimen type. Greater than 98.8% of the collected samples were distinguished from the subjects for all of the specimen types, demonstrating that these specimens can be used for distinguishing individuals. Additionally, field trials were performed to determine the utility of these specimens as scent sources for human scent discriminating canines. Three trials were conducted to evaluate hair, fingernails and saliva in comparison to hand odor, which was considered the standard source of human odor. It was revealed that canines perform similarly to these alternative human scent sources as they do to hand odor implying that, though there are differences in the chemical profiles released by these specimens, they can still be used for the discrimination of individuals by trained canines.
Resumo:
Dietary fiber was classified according to its solubility in an attempt to relate physiological effects to chemical types of fiber. Soluble fibers (B-glucans, gums, wheat dextrin, psyllium, pectin, inulin) were considered to have benefits on serum lipids, while insoluble fibers (cellulose, lignin, pectins, hemicelluloses) were linked with laxation benefits. More important characteristics of fiber in terms of physiological benefits are viscosity and fermentability. Viscous fibers (pectins, B-glucans, gums, psyllium) are those that have gel-forming properties in the intestinal tract, and fermentable fibers (wheat dextrin, pectins, B-glucans, gum, inulin) are those that can be metabolized by colonic bacteria. Objective: To summarize the beneficial effects of dietary fiber, as nutraceuticals, in order to maintain a healthy gastrointestinal system. Methods: Our study is a systematic review. Electronic databases, including PubMed, Medline, with supplement of relevant websites, were searched. We included randomized and non-randomized clinical trials, epidemiological studies (cohort and case-control). We excluded case series, case reports, in vitro and animal studies. Results: The WHO, the U.S. Food and Drug Administration (FDA), the Heart Foundation and the Romanian Dietary Guidelines recommends that adults should aim to consume approximately 25–30 g fiber daily. Dietary fiber is found in the indigestible parts of cereals, fruits and vegetables. There are countries where people don’t eat enough food fibers, these people need to take some kind of fiber supplement. Evidence has been found that dietary fiber from whole foods or supplements may (1) reduce the risk of cardiovascular disease by improving serum lipids and reducing serum total and low-density lipoprotein (LDL) cholesterol concentrations, (2) decreases the glycaemic index of foods, which leads to an improvement in glycemic response, positive impact on diabetes, (3) protect against development of obesity by increasing satiety hormone leptin concentrations, (4) reduced risk of developing colorectal cancer by normalizes bowel movements, improve the integrity of the epithelial layer of the intestines, increase the resistance against pathogenic colonization, have favorable effects on the gut microbiome, wich is the second genomes of the microorganisms, (5) have a positive impact on the endocrine system by gastrointestinal polypeptide hormonal regulation of digestion, (6) have prebiotic effect by short-chain fatty acids (SCFA) production; butyrate acid is the preferred energy source for colonic epithelial cells, promotes normal cell differentiation and proliferation, and also help regulate sodium and water absorption, and can enhance absorption of calcium and other minerals. Although all prebiotics are fiber, not all fiber is prebiotic. This generally refers to the ability of a fiber to increase the growth of bifidobacteria and lactobacilli, which are beneficial to human health, and (7) play a role in improving immune function via production of SCFAs by increases T helper cells, macrophages, neutrophils, and increased cytotoxic activity of natural killer cells. Conclusion: Fiber consumption is associated with high nutritional value and antioxidant status of the diet, enhancing the effects on human health. Fibers with prebiotic properties can also be recommended as part of fiber intake. Due to the variability of fiber’s effects in the body, it is important to consume fiber from a variety of sources. Increasing fiber consumption for health promotion and disease prevention is a critical public health goal.
Resumo:
Polychlorinated biphenyls (PCBs) and substituted phenylamine antioxidants (SPAs) are two chemical groups that have been used in multiple Canadian industrial processes. Despite the production ban of PCBs in North America in 1977, they are still ubiquitous in the environment and in wildlife tissues. Previous studies of fish, amphibians, birds, and mammals have shown that PCBs are toxic and act as endocrine disruptors. In contrast, SPAs, specifically N-phenyl-1-naphthylamine (PANA), have received very little attention despite their current use in Canada and their expected environmental releases. The effects of PCB and PANA exposures in reptiles remain unknown thus, juvenile Chelydra serpentina were used in this thesis as a model vertebrate to fill in missing toxicity research gaps due to their importance as an environmental indicator. First, food pellets were spiked at an environmentally relevant concentration of the PCB mixture Aroclor 1254 (A1254) to model hepatic bioaccumulation (0.45 μg/g A1254 for 31 days) and depuration (clean food for 50 days) of PCBs in turtles. No significant differences in PCB concentrations were observed between the control and treated animals, suggesting that juvenile turtles exposed to environmentally relevant concentrations of PCBs can likely detoxify low concentrations of PCBs. Additionally, two dose-response experiments were performed using A1254 or PANA spiked food (0-12.7 μg/g and 0-3,446 μg/g, respectively) to determine hepatic toxicity and bioaccumulation in juvenile C. serpentina. An increase in hepatic cyp1a was observed when exposed to the highest dose of both chemicals: 1) for A1254, induction correlated to the significant increase in hepatic PCB congeners that are known to be metabolized by CYP1A; and 2) for PANA, induction suggested that CYP1A has a potential role in its detoxification. PCBs are known endocrine disruptors, but no significant changes were observed for both thyroid receptors (alpha and beta) or by estrogen and androgen receptors. This lack of response, also noted in the PANA exposure, suggests that C. serpentina is less sensitive to endocrine disruption than other vertebrates. Furthermore, the expression of genes involved in cellular stress was not altered in PCB and PANA exposed animals, supporting the resilience of turtles to oxidative stress. This is the first study to demonstrate the toxicity of PCBs and PANA in C. serpentina, demonstrating the turtle’s high tolerance to contamination.
Resumo:
The thermal decomposition of natural ammonium oxalate known as oxammite has been studied using a combination of high resolution thermogravimetry coupled to an evolved gas mass spectrometer and Raman spectroscopy coupled to a thermal stage. Three mass loss steps were found at 57, 175 and 188°C attributed to dehydration, ammonia evolution and carbon dioxide evolution respectively. Raman spectroscopy shows two bands at 3235 and 3030 cm-1 attributed to the OH stretching vibrations and three bands at 2995, 2900 and 2879 cm-1, attributed to the NH vibrational modes. The thermal degradation of oxammite may be followed by the loss of intensity of these bands. No intensity remains in the OH stretching bands at 100°C and the NH stretching bands show no intensity at 200°C. Multiple CO symmetric stretching bands are observed at 1473, 1454, 1447 and 1431cm-1, suggesting that the mineral oxammite is composed of a mixture of chemicals including ammonium oxalate dihydrate, ammonium oxalate monohydrate and anhydrous ammonium oxalate.
Resumo:
The specific mechanisms by which selective pressures affect individuals are often difficult to resolve. In tephritid fruit flies, males respond strongly and positively to certain plant derived chemicals. Sexual selection by female choice has been hypothesized as the mechanism driving this behaviour in certain species, as females preferentially mate with males that have fed on these chemicals. This hypothesis is, to date, based on studies of only very few species and its generality is largely untested. We tested the hypothesis on different spatial scales (small cage and seminatural field-cage) using the monophagous fruit fly, Bactrocera cacuminata. This species is known to respond to methyl eugenol (ME), a chemical found in many plant species and one upon which previous studies have focused. Contrary to expectation, no obvious female choice was apparent in selecting ME-fed males over unfed males as measured by the number of matings achieved over time, copulation duration, or time of copulation initiation. However, the number of matings achieved by ME-fed males was significantly greater than unfed males 16 and 32 days after exposure to ME in small cages (but not in a field-cage). This delayed advantage suggests that ME may not influence the pheromone system of B. cacuminata but may have other consequences, acting on some other fitness consequence (e.g., enhancement of physiology or survival) of male exposure to these chemicals. We discuss the ecological and evolutionary implications of our findings to explore alternate hypotheses to explain the patterns of response of dacine fruit flies to specific plant-derived chemicals.