858 resultados para embryo’s ability to live
Resumo:
The ability to adapt to and respond to increases in external osmolarity is an important characteristic that enables bacteria to survive and proliferate in different environmental niches. When challenged with increased osmolarity, due to sodium chloride (NaCl) for example, bacteria elicit a phased response; firstly via uptake of potassium (K+), which is known as the primary response. This primary response is followed by the secondary response which is characterised by the synthesis or uptake of compatible solutes (osmoprotectants). The overall osmotic stress response is much broader however, involving many diverse cellular systems and processes. These ancillary mechanisms are arguably more interesting and give a more complete view of the osmotic stress response. The aim of this thesis was to identify novel genetic loci from the human gut microbiota that confer increased tolerance to osmotic stress using a functional metagenomic approach. Functional metagenomics is a powerful tool that enables the identification of novel genes from as yet uncultured bacteria from diverse environments through cloning, heterologous expression and phenotypic identification of a desired trait. Functional metagenomics does not rely on any previous sequence information to known genes and can therefore enable the discovery of completely novel genes and assign functions to new or known genes. Using a functional metagenomic approach, we have assigned a novel function to previously annotated genes; murB, mazG and galE, as well as a putative brp/blh family beta-carotene 15,15’-monooxygenase. Finally, we report the identification of a completely novel salt tolerance determinant with no current known homologues in the databases. Overall the genes identified originate from diverse taxonomic and phylogenetic groups commonly found in the human gastrointestinal (GI) tract, such as Collinsella and Eggerthella, Akkermansia and Bacteroides from the phyla Actinobacteria, Verrucomicrobia and Bacteroidetes, respectively. In addition, a number of the genes appear to have been acquired via lateral gene transfer and/or encoded on a prophage. To our knowledge, this thesis represents the first investigation to identify novel genes from the human gut microbiota involved in the bacterial osmotic stress response.
Resumo:
Introduction and Rationale: A central argument in the thesis is that performative acts of control, sexual potency and spontaneity are central to the continuous construction of embodied masculine identities. The acts of control, and particularly issues of spontaneity, are central to understandings and addressing the difficulties men face at varying levels of embodied identity. Using Watson’s (2000) ‘Male body schema’, I will explore the challenges and opportunities men face when negotiating normative, pragmatic, and experiential embodiment. I will later then explore the importance of these levels of embodiment to achieving visceral embodiment; or what I would define as a renewed unconscious satisfaction and ability to achieve and maintain normative, pragmatic and experiential forms of embodiment. Purpose and Objectives: Using the concept of liminality, and permanent liminality, the thesis explores how we can interpret and understand men’s experience of prostate cancer diagnosis and treatment, and their struggle to regain power and control in the context of diagnosis, and also the side effects to treatment. The strategies men adopt in seeking out personalised medical programmes of treatment with their doctors are explored in detail. The power and control that can be exercised over medical professionals and treatment options is demonstrated. Method: Collecting responses online from prostate specific discussion boards via gatekeepers, and from interviews on the ‘health talk’ online database, three intersecting conceptual categories - liminality, masculinity and the body/embodiment - are combined in this research. Liminality and ‘time’ are directly linked to notions of ‘success’ and ‘outcome’ during the treatment process, and mark distinct points at which men, and their families, expect measures or limits to have been reached. Exploring liminality within the context of Turner’s ‘rites of passage’, I explore the difficulty men face in concluding the third stage of the rites; reintegration. Results: Prostate cancer diagnosis and treatment, impotence and incontinence, in particular, have profound implications for the continuous construction of embodied masculine identities, and thus identity in general, making the construction of hegemonic ideals in the context of a highly ‘performative’ society highly troublesome. The issue of ‘spontaneity’ in the construction of various forms of embodied identities is of particular concern for men who contributed to this study.
Resumo:
We provide evidence that college graduation plays a direct role in revealing ability to the labor market. Using the NLSY79, our results suggest that ability is observed nearly perfectly for college graduates, but is revealed to the labor market more gradually for high school graduates. Consequently, from the beginning of their careers, college graduates are paid in accordance with their own ability, while the wages of high school graduates are initially unrelated to their own ability. This view of ability revelation in the labor market has considerable power in explaining racial differences in wages, education, and returns to ability.
Resumo:
The mammalian heart has little capacity to regenerate, and following injury the myocardium is replaced by non-contractile scar tissue. Consequently, increased wall stress and workload on the remaining myocardium leads to chamber dilation, dysfunction, and heart failure. Cell-based therapy with an autologous, epigenetically reprogrammed, and cardiac-committed progenitor cell source could potentially reverse this process by replacing the damaged myocardium with functional tissue. However, it is unclear whether cardiac progenitor cell-derived cardiomyocytes are capable of attaining levels of structural and functional maturity comparable to that of terminally-fated cardiomyocytes. Here, we first describe the derivation of mouse induced pluripotent stem (iPS) cells, which once differentiated allow for the enrichment of Nkx2-5(+) cardiac progenitors, and the cardiomyocyte-specific expression of the red fluorescent protein. We show that the cardiac progenitors are multipotent and capable of differentiating into endothelial cells, smooth muscle cells and cardiomyocytes. Moreover, cardiac progenitor selection corresponds to cKit(+) cell enrichment, while cardiomyocyte cell-lineage commitment is concomitant with dual expression of either cKit/Flk1 or cKit/Sca-1. We proceed to show that the cardiac progenitor-derived cardiomyocytes are capable of forming electrically and mechanically coupled large-scale 2D cell cultures with mature electrophysiological properties. Finally, we examine the cell progenitors' ability to form electromechanically coherent macroscopic tissues, using a physiologically relevant 3D culture model and demonstrate that following long-term culture the cardiomyocytes align, and form robust electromechanical connections throughout the volume of the biosynthetic tissue construct. We conclude that the iPS cell-derived cardiac progenitors are a robust cell source for tissue engineering applications and a 3D culture platform for pharmacological screening and drug development studies.
Resumo:
The humoral immune system plays a critical role in the clearance of numerous pathogens. In the setting of HIV-1 infection, the virus infects, integrates its genome into the host's cells, replicates, and establishes a reservoir of virus-infected cells. The initial antibody response to HIV-1 infection is targeted to non-neutralizing epitopes on HIV-1 Env gp41, and when a neutralizing response does develop months after transmission, it is specific for the autologous founder virus and the virus escapes rapidly. After continuous waves of antibody mediated neutralization and viral escape, a small subset of infected individuals eventually develop broad and potent heterologous neutralizing antibodies years after infection. In this dissertation, I have studied the ontogeny of mucosal and systemic antibody responses to HIV-1 infection by means of three distinct aims: 1. Determine the origin of the initial antibody response to HIV-1 infection. 2. Characterize the role of restricted VH and VL gene segment usage in shaping the antibody response to HIV-1 infection. 3. Determine the role of persistence of B cell clonal lineages in shaping the mutation frequencies of HIV-1 reactive antibodies.
After the introduction (Chapter 1) and methods (Chapter 2), Chapter 3 of this dissertation describes a study of the antibody response of terminal ileum B cells to HIV-1 envelope (Env) in early and chronic HIV-1 infection and provides evidence for the role of environmental antigens in shaping the repertoire of B cells that respond to HIV-1 infection. Previous work by Liao et al. demonstrated that the initial plasma cell response in the blood to acute HIV-1 infection is to gp41 and is derived from a polyreactive memory B cell pool. Many of these antibodies cross-reacted with commensal bacteria, Therefore, in Chapter 3, the relationship of intestinal B cell reactivity with commensal bacteria to HIV-1 infection-induced antibody response was probed using single B cell sorting, reverse transcription and nested polymerase chain reaction (RT- PCR) methods, and recombinant antibody technology. The dominant B cell response in the terminal ileum was to HIV-1 envelope (Env) gp41, and 82% of gp41- reactive antibodies cross-reacted with commensal bacteria whole cell lysates. Pyrosequencing of blood B cells revealed HIV-1 antibody clonal lineages shared between ileum and blood. Mutated IgG antibodies cross-reactive with both Env gp41 and commensal bacteria could also be isolated from the terminal ileum of HIV-1 uninfected individuals. Thus, the antibody response to HIV-1 can be shaped by intestinal B cells stimulated by commensal bacteria prior to HIV-1 infection to develop a pre-infection pool of memory B cells cross-reactive with HIV-1 gp41.
Chapter 4 details the study of restricted VH and VL gene segment usage for gp41 and gp120 antibody induction following acute HIV-1 infection; mutations in gp41 lead to virus enhanced neutralization sensitivity. The B cell repertoire of antibodies induced in a HIV-1 infected African individual, CAP206, who developed broadly neutralizing antibodies (bnAbs) directed to the HIV-1 envelope gp41 membrane proximal external region (MPER), is characterized. Understanding the selection of virus mutants by neutralizing antibodies is critical to understanding the role of antibodies in control of HIV-1 replication and prevention from HIV-1 infection. Previously, an MPER neutralizing antibody, CAP206-CH12, with the binding footprint identical to that of MPER broadly neutralizing antibody 4E10, that like 4E10 utilized the VH1-69 and VK3-20 variable gene segments was isolated from this individual (Morris et al., 2011). Using single B cell sorting, RT- PCR methods, and recombinant antibody technology, Chapter 4 describes the isolation of a VH1-69, Vk3-20 glycan-dependent clonal lineage from CAP206, targeted to gp120, that has the property of neutralizing a neutralization sensitive CAP206 transmitted/founder (T/F) and heterologous viruses with mutations at amino acids 680 or 681 in the MPER 4E10/CH12 binding site. These data demonstrate sites within the MPER bnAb epitope (aa 680-681) in which mutations can be selected that lead to viruses with enhanced sensitivity to autologous and heterologous neutralizing antibodies.
In Chapter 5, I have completed a comparison of evolution of B cell clonal lineages in two HIV-1 infected individuals who have a predominant VH1-69 response to HIV-1 infection--one who produces broadly neutralizing MPER-reactive mAbs and one who does not. Autologous neutralization in the plasma takes ~12 weeks to develop (Gray et al., 2007; Tomaras et al., 2008b). Only a small subset of HIV-1 infected individuals develops high plasma levels of broad and potent heterologous neutralization, and when it does occur, it typically takes 3-4 years to develop (Euler et al., 2010; Gray et al., 2007; 2011; Tomaras et al., 2011). The HIV-1 bnAbs that have been isolated to date have a number of unusual characteristics including, autoreactivity and high levels of somatic hypermutations, which are typically tightly regulated by immune control mechanisms (Haynes et al., 2005; 2012b; Kwong and Mascola, 2012; Scheid et al., 2009a). The VH mutation frequencies of bnAbs average ~15% but have been shown to be as high as 32% (reviewed in Mascola and Haynes, 2013; Kwong and Mascola, 2012). The high frequency of somatic hypermutations suggests that the B cell clonal lineages that eventually produce bnAbs undergo high-levels of affinity maturation, implying prolonged germinal center (GC) reactions and high levels of T cell help. To study the duration of HIV-1- reactive B cell clonal persistence, HIV-1 reactive and non HIV-1- reactive B cell clonal lineages were isolated from an HIV-1 infected individual that produces bnAbs, CAP206, and an HIV-1 infected individual who does not produce bnAbs, 004-0. Single B cell sorting, RT-PCR and recombinant antibody technology was used to isolate and produce monoclonal antibodies from multiple time points from each individual. B cell sequences clonally related to mAbs isolated by single cell PCR were identified within pyrosequences of longitudinal samples of these two individuals. Both individuals produced long-lived B cell clones that persisted from 0-232 weeks in CAP206, and 0-238 weeks in 004-0. The average length of persistence of clones containing members isolated from two separate time points was 91.5 weeks both individuals. Examples of the continued evolution of clonal lineages were observed in both the bnAb and non-bnAb individual. These data indicated that the ability to generate persistent and evolving B cell clonal lineages occurs in both bnAb and non-bnAb individuals, suggesting that some alternative host or viral factor is critical for the generation of highly mutated broadly neutralizing antibodies.
Together the studies described in Chapter 3-5 show that multiple factors influence the antibody response to HIV-1 infection. The initial antibody response to HIV-1 Env gp41 can be shaped by a B cell response to intestinal commensal bacteria prior to HIV-1 infection. VH and VL gene segment restriction can impact the B cell response to multiple HIV-1 antigens, and virus escape mutations in the MPER can confer enhanced neutralization sensitivity to autologous and heterologous antibodies. Finally, the ability to generate long-lived HIV-1 clonal lineages in and of itself does not confer on the host the ability to produce bnAbs.
Resumo:
BACKGROUND: Penguins are flightless aquatic birds widely distributed in the Southern Hemisphere. The distinctive morphological and physiological features of penguins allow them to live an aquatic life, and some of them have successfully adapted to the hostile environments in Antarctica. To study the phylogenetic and population history of penguins and the molecular basis of their adaptations to Antarctica, we sequenced the genomes of the two Antarctic dwelling penguin species, the Adélie penguin [Pygoscelis adeliae] and emperor penguin [Aptenodytes forsteri]. RESULTS: Phylogenetic dating suggests that early penguins arose ~60 million years ago, coinciding with a period of global warming. Analysis of effective population sizes reveals that the two penguin species experienced population expansions from ~1 million years ago to ~100 thousand years ago, but responded differently to the climatic cooling of the last glacial period. Comparative genomic analyses with other available avian genomes identified molecular changes in genes related to epidermal structure, phototransduction, lipid metabolism, and forelimb morphology. CONCLUSIONS: Our sequencing and initial analyses of the first two penguin genomes provide insights into the timing of penguin origin, fluctuations in effective population sizes of the two penguin species over the past 10 million years, and the potential associations between these biological patterns and global climate change. The molecular changes compared with other avian genomes reflect both shared and diverse adaptations of the two penguin species to the Antarctic environment.
Resumo:
Reactions to stressful negative events have long been studied using approaches based on either the narrative interpretation of the event or the traits of the individual. Here, we integrate these 2 approaches by using individual-differences measures of both the narrative interpretation of the stressful event as central to one's life and the personality characteristic of negative affectivity. We show that they each have independent contributions to stress reactions and that high levels on both produce greater than additive effects. The effects on posttraumatic stress symptoms are substantial for both undergraduates (Study 1, n = 2,296; Study 3, n = 488) and veterans (Study 2, n = 104), with mean levels for participants low on both measures near floor on posttraumatic stress symptoms and those high on both measures scoring at or above diagnostic thresholds. Study 3 included 3 measures of narrative centrality and 3 of negative affectivity to demonstrate that the effects were not limited to a single measure. In Study 4 (n = 987), measures associated with symptoms of posttraumatic stress correlated substantially with either measures of narrative centrality or measures of negative affectivity. The concepts of narrative centrality and negative affectivity and the results are consistent with findings from clinical populations using similar measures and with current approaches to therapy. In broad nonclinical populations, such as those used here, the results suggest that we might be able to substantially increase our ability to account for the severity of stress response by including both concepts.
Resumo:
During many chronic infections virus-specific CD8 T cells succumb to exhaustion as they lose their ability to respond to antigenic activation. Combinations of IL-12, IL-18, and IL-21 have been shown to induce the antigen-independent production of interferon (IFN)-γ by effector and memory CD8 T cells. In this study we investigated whether exhausted CD8 T cells are sensitive to activation by these cytokines. We show that effector and memory, but not exhausted, CD8 T cells produce IFN-γ and upregulate CD25 following exposure to certain combinations of IL-12, IL-18, and IL-21. The unresponsiveness of exhausted CD8 T cells is associated with downregulation of the IL-18-receptor-α (IL-18Rα). Although IL-18Rα expression is connected with the ability of memory CD8 T cells to self-renew and efflux rhodamine 123, the IL-18Rα(lo) exhausted cells remained capable of secreting this dye. To further evaluate the consequences of IL-18Rα downregulation, we tracked the fate of IL-18Rα-deficient CD8 T cells in chronically infected mixed bone marrow chimeras and discovered that IL-18Rα affects the initial but not later phases of the response. The antigen-independent responsiveness of exhausted CD8 T cells was also investigated following co-infection with Listeria monocytogenes, which induces the expression of IL-12 and IL-18. Although IL-18Rα(hi) memory cells upregulated CD25 and produced IFN-γ, the IL-18Rα(lo) exhausted cells failed to respond. Collectively, these findings indicate that as exhausted T cells adjust to the chronically infected environment, they lose their susceptibility to antigen-independent activation by cytokines, which compromises their ability to detect bacterial co-infections.
Resumo:
The ability to imitate complex sounds is rare, and among birds has been found only in parrots, songbirds, and hummingbirds. Parrots exhibit the most advanced vocal mimicry among non-human animals. A few studies have noted differences in connectivity, brain position and shape in the vocal learning systems of parrots relative to songbirds and hummingbirds. However, only one parrot species, the budgerigar, has been examined and no differences in the presence of song system structures were found with other avian vocal learners. Motivated by questions of whether there are important differences in the vocal systems of parrots relative to other vocal learners, we used specialized constitutive gene expression, singing-driven gene expression, and neural connectivity tracing experiments to further characterize the song system of budgerigars and/or other parrots. We found that the parrot brain uniquely contains a song system within a song system. The parrot "core" song system is similar to the song systems of songbirds and hummingbirds, whereas the "shell" song system is unique to parrots. The core with only rudimentary shell regions were found in the New Zealand kea, representing one of the only living species at a basal divergence with all other parrots, implying that parrots evolved vocal learning systems at least 29 million years ago. Relative size differences in the core and shell regions occur among species, which we suggest could be related to species differences in vocal and cognitive abilities.
Resumo:
Immune responses are highly energy-dependent processes. Activated T cells increase glucose uptake and aerobic glycolysis to survive and function. Malnutrition and starvation limit nutrients and are associated with immune deficiency and increased susceptibility to infection. Although it is clear that immunity is suppressed in times of nutrient stress, mechanisms that link systemic nutrition to T cell function are poorly understood. We show in this study that fasting leads to persistent defects in T cell activation and metabolism, as T cells from fasted animals had low glucose uptake and decreased ability to produce inflammatory cytokines, even when stimulated in nutrient-rich media. To explore the mechanism of this long-lasting T cell metabolic defect, we examined leptin, an adipokine reduced in fasting that regulates systemic metabolism and promotes effector T cell function. We show that leptin is essential for activated T cells to upregulate glucose uptake and metabolism. This effect was cell intrinsic and specific to activated effector T cells, as naive T cells and regulatory T cells did not require leptin for metabolic regulation. Importantly, either leptin addition to cultured T cells from fasted animals or leptin injections to fasting animals was sufficient to rescue both T cell metabolic and functional defects. Leptin-mediated metabolic regulation was critical, as transgenic expression of the glucose transporter Glut1 rescued cytokine production of T cells from fasted mice. Together, these data demonstrate that induction of T cell metabolism upon activation is dependent on systemic nutritional status, and leptin links adipocytes to metabolically license activated T cells in states of nutritional sufficiency.
Resumo:
BACKGROUND: Breastfeeding is a leading cause of infant HIV-1 infection in the developing world, yet only a minority of infants exposed to HIV-1 via breastfeeding become infected. As a genetic bottleneck severely restricts the number of postnatally-transmitted variants, genetic or phenotypic properties of the virus Envelope (Env) could be important for the establishment of infant infection. We examined the efficiency of virologic functions required for initiation of infection in the gastrointestinal tract and the neutralization sensitivity of HIV-1 Env variants isolated from milk of three postnatally-transmitting mothers (n = 13 viruses), five clinically-matched nontransmitting mothers (n = 16 viruses), and seven postnatally-infected infants (n = 7 postnatally-transmitted/founder (T/F) viruses). RESULTS: There was no difference in the efficiency of epithelial cell interactions between Env virus variants from the breast milk of transmitting and nontransmitting mothers. Moreover, there was similar efficiency of DC-mediated trans-infection, CCR5-usage, target cell fusion, and infectivity between HIV-1 Env-pseudoviruses from nontransmitting mothers and postnatal T/F viruses. Milk Env-pseudoviruses were generally sensitive to neutralization by autologous maternal plasma and resistant to breast milk neutralization. Infant T/F Env-pseudoviruses were equally sensitive to neutralization by broadly-neutralizing monoclonal and polyclonal antibodies as compared to nontransmitted breast milk Env variants. CONCLUSION: Postnatally-T/F Env variants do not appear to possess a superior ability to interact with and cross a mucosal barrier or an exceptional resistance to neutralization that define their capability to initiate infection across the infant gastrointestinal tract in the setting of preexisting maternal antibodies.
Resumo:
Interactions of Mycobacterium tuberculosis with macrophages have long been recognized to be crucial to the pathogenesis of tuberculosis. The role of non-phagocytic cells is less well known. We have discovered a M. tuberculosis surface protein that interacts specifically with non-phagocytic cells, expresses hemagglutination activity and binds to sulfated glycoconjugates. It is therefore called heparin-binding hemagglutinin (HBHA). HBHA-deficient M. tuberculosis mutant strains are significantly impaired in their ability to disseminate from the lungs to other tissues, suggesting that the interaction with non-phagocytic cells, such as pulmonary epithelial cells, may play an important role in the extrapulmonary dissemination of the tubercle bacillus, one of the key steps that may lead to latency. Latently infected human individuals mount a strong T cell response to HBHA, whereas patients with active disease do not, suggesting that HBHA is a good marker for the immunodiagnosis of latent tuberculosis, and that HBHA-specific Th1 responses may contribute to protective immunity against active tuberculosis. Strong HBHA-mediated immuno-protection was shown in mouse challenge models. HBHA is a methylated protein and its antigenicity in latently infected subjects, as well as its protective immunogenicity strongly depends on the methylation pattern of HBHA. In both mice and man, the HBHA-specific IFN-gamma was produced by both the CD4(+) and the CD8(+) T cells. Furthermore, the HBHA-specific CD8(+) T cells expressed bactericidal and cytotoxic activities to mycobacteria-infected macrophages. This latter activity is most likely perforin mediated. Together, these observations strongly support the potential of methylated HBHA as an important component in future, acellular vaccines against tuberculosis.
Resumo:
Although post-translational modifications of protein antigens may be important componenets of some B cell epitopes, the determinants of T cell immunity are generally nonmodified peptides. Here we show that methylation of the Mycobacterium tuberculosis heparin-binding hemagglutinin (HBHA) by the bacterium is essential for effective T cell immunity to this antigen in infected healthy humans and in mice. Methylated HBHA provides high levels of protection against M. tuberculosis challenge in mice, whereas nonmethylated HBHA does not. Protective immunity induced by methylated HBHA is comparable to that afforded by vaccination with bacille Calmette et Guérin, the only available anti-tuberculosis vaccine. Thus, post-translational modifications of proteins may be crucial for their ability to induce protective T cell-mediated immunity against infectious diseases such as tuberculosis.
Resumo:
Software technology that predicts stress in electronic systems and packages, developed as part of TCS Programme, is described. The software is closely integrated within a thermal design tool providing the ability to simulate the coupled effects of airflow, temperature and stress on product performance. This integrated approach to analysis will help decrease the number of design cycles.
Resumo:
In this article, suggestions are made for introducing an individual element into formative assessment of the ability to use computer software for statistics.